

Report on Geotechnical Investigation

Rocla Site - Proposed Development 158-164 Old Bathurst Road, Emu Plains

> Prepared for Penrith City Council

Project 200309.02 January 2024

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	200309.02	Document No.	R.001.Rev2
Document title	Report on Geotechnic	cal Investigation	
	Rocla Site - Proposed	d Development	
Site address	158-164 Old Bathurst	Road, Emu Plains	
Report prepared for	Penrith City Council		
File name	200309.02.R.001.Rev	/2.docx	

Document status and review

Status	Prepared by	Reviewed by	Date issued	
Revision 0	Gavin Boyd	Konrad Schultz	24 July 2023	
Revision 1	Alexander Hanna	Peter Oitmaa	12 October 2023	
Revision 2	Alexander Hanna	Peter Oitmaa	10 January 2024	

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	Ms Ruma McCracken, Penrith City Council
Revision 1	1	0	Ms Ruma McCracken, Penrith City Council
Revision 2	1	0	Ms Ruma McCracken, Penrith City Council

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	pp AH	10 January 2024
Reviewer	Alah	10 January 2024

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 593 Withers Road Rouse Hill NSW 2155 Phone (02) 4666 0450

Executive Summary

This report presents the results of a geotechnical investigation undertaken by Douglas Partners Pty Ltd (DP) for a proposed development at Rocla, 158-164 Old Bathurst Road, Emu Plains. The investigation was commissioned in an email dated 4 January 2021 by JBS&G Pty Ltd on behalf of Penrith City Council and was undertaken in accordance with DP's proposal dated 11 December 2020. This updated report was commissioned by Ms Ruma McCracken of Penrith City Council on 25 September 2023.

It is understood that the proposed development will involve the subdivision of the site into industrial lots and the construction of a detention basin, internal road pavements and services.

The investigation included the drilling of boreholes, cone penetration tests (CPTs) and laboratory testing of selected samples. The details of the field work undertaken, and the results obtained, are presented in this report, together with comments and recommendations for design and construction.

Site investigations have indicated the following geotechnical model for the site in increasing depth order:

- Unit 1 Uncontrolled Fill typically in the range from 0.1 m to 1.5 m depth with localised deeper areas of up to about 3.0 m depth. The fill comprises a mixture of gravels and crushed concrete with clays and sand.
- Unit 2 Alluvial soils typically stiff to hard clay and loose to medium dense sand layers with some minor localised soft clay layers near old creek-lines on-site.
- Unit 3 Gravels gravels within a clay or soil matrix were encountered from depths of between 3.3 m and 8.4 m.
- Unit 4 Bedrock shale bedrock was encountered at 12 m depth at MW3 of the Ramboll investigation.

Previous investigations have indicated that groundwater levels are likely to be in the depth range of 6.6 m to 7.4 m (RL 17.4 to 17.9 m AHD) and flows to the east. Groundwater levels can fluctuate with climatic variations.

The major geotechnical consideration for development of the site is the potential ongoing settlement of the fill and underlying natural soils. The fill material on-site is variable in its thickness, composition and compaction and is expected to perform variably if relied upon for support in its current state. DP has provided a remedial approach with respect to the fill on-site.

Foundation support will be dependent on the magnitude of loads applied. Light industrial structures may be able to be supported by a shallow footing system (e.g. spread footings or raft slabs) provided they are appropriately designed by a structural engineer. Higher structural loads will need to be supported by piles, particularly for concentrated column and wall loads.

Further investigation will be required once the details of the development and the general approach to supporting the structures are known.

Table of Contents

Page

1.	Intro	duction		1
2.	Back	ground .		1
3.	Site	Descripti	on	1
4.	Publi	shed Da	ta	3
	4.1	Geolog	Jy	3
	4.2	Hydrog	jeology	3
	4.3	Soil La	ndscape	4
	4.4	Acid Su	ulfate Soils	4
	4.5	Salinity	/	5
5.	Field	Work		5
	5.1	Method	ds	5
	5.2	Results	5	6
6.	Labo	ratory Te	esting	7
	6.1	Mecha	nical Testing	7
	6.2	Chemic	cal Testing	7
		6.2.1	Aggressivity	
		6.2.2	Salinity	
7.	Prop	osed De	velopment	9
8.	Geot	echnical	Model	10
9.	Com	ments		11
	9.1	Genera	al	11
	9.2	Excava	ations	11
	9.3	Site Pr	eparation and Remediation of Existing Fill	12
	9.4	Founda	ations	13
		9.4.1 9.4.2	Pile Foundations	
	9.5	-	c Design	
	9.6		Slabs	
	9.7		ents	
	9.8			
	- • -	9.8.1	Impact of the Saline Soils on the Proposed Development	
		9.8.2	Salinity Management Plan	16
	9.9	Site Dr	ainage	18

10.	Further Investigation	19
11.	References	19
12.	Limitations	20

Appendix A:	About This Report
Appendix B:	Drawings
Appendix C:	Results of Field Work
Appendix D:	Laboratory Test Results
Appendix E:	Results of Previous Investigations (by others)

Report on Geotechnical Investigation Rocla Site - Proposed Development 158-164 Old Bathurst Road, Emu Plains

1. Introduction

This report presents the results of an updated geotechnical investigation report undertaken by Douglas Partners Pty Ltd (DP) for a proposed development at Rocla, 158-164 Old Bathurst Road, Emu Plains. The original investigation was commissioned in an email dated 4 January 2021 by JBS&G Pty Ltd on behalf of Penrith City Council and was undertaken in accordance with DP's email proposal dated 11 December 2020. This updated report was commissioned by Ms Ruma McCracken of Penrith City Council on 25 September 2023.

It is understood that the proposed development will involve the subdivision of the site into industrial lots and the construction of a detention basin, internal road pavements and services. Geotechnical investigation was carried out to provide information on subsurface conditions for planning and to support the submission of a development application.

The investigation included the drilling of boreholes, cone penetration tests (CPTs) and laboratory testing of selected samples. The details of the field work undertaken, and the results obtained, are presented in this report, together with comments and recommendations for design and construction.

2. Background

DP understands that this geotechnical investigation is being carried out concurrently with a contamination assessment by JBS&G Pty Ltd. The investigation by JBS&G included the excavation of 23 test pits, drilling of 13 boreholes and installation of three groundwater monitoring wells.

A previous investigation was also completed by Ramboll Australia in May 2020 which included the drilling of 31 boreholes (BH1 to BH31) and the installation of six groundwater monitoring boreholes (MW1 to MW6). The information from the boreholes was provided to DP and used to complement information obtained in this geotechnical investigation.

The detailed borehole and test pit logs from the aforementioned investigations (completed by others) are provided in Appendix E. It is understood that this site is subject to a site audit by an EPA accredited auditor.

3. Site Description

The site is located at 158 – 164 Old Bathurst Road, Emu Plains (Lot 1 DP 588918 and Lot 2 DP 588919). It is an irregular-shaped area of approximately 16 hectares, with maximum north-south and east-west dimensions of approximately 400 m and 450 m, respectively. The site area is shown in Figure 1.

corner of the site.

At the time of the field work the site contained a concrete production, manufacturing and storage facility which was predominantly covered by a gravel surfaced area with numerous stored materials scattered over the site. Some warehouse buildings were located over the central and eastern portions of the site and small to large sized trees were observed along all boundaries and in the south-western corner of

The site is bounded to the north-east by Old Bathurst Road, to the south-east by undeveloped land and the main Western Railway Line, to the south-west by industrial properties, and the north-west by David Road.

the site. A pond with a surface area of approximately 2000 m² was also located in the south-western

The site topography generally slopes down to the north-west at gradients estimated to be less than 1° with the ground surface level at approximately RL 24 (m AHD). A meander of the Nepean River surrounds the site located approximately 0.9 km to 1.5 km to the north, south-east and east of the site.

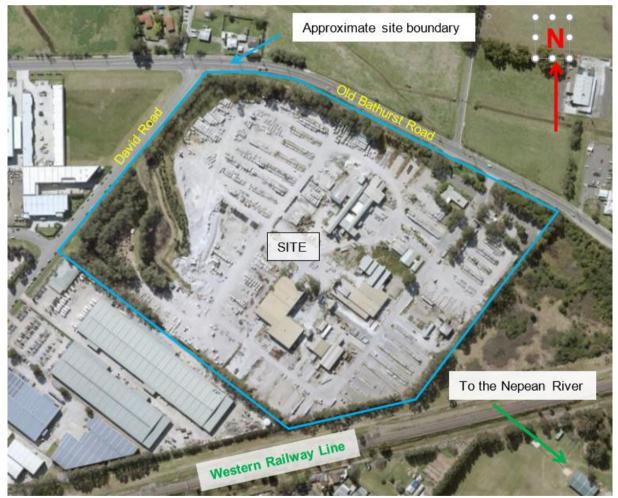


Figure 1: Site Location Plan (Source: Metro Map)

4. Published Data

4.1 Geology

Reference to the Penrith 1:100 000 scale Geological Series Sheet indicates that the site is underlain by the Cranebrook Formation soil of Quaternary age. This formation comprises gravel, sand, silt, and clay.

The site is in an area mapped as near Rickaby's Creek Gravels of Tertiary age. This geological unit is known to underlie the Quaternary aged sediments in the area. The Rickaby's Creek Gravels mapped to the west are typically poorly sorted gravel (gravels consist of clasts of quartz, quartzite, silcrete, chert, porphyry, granite, hornfels and sandstone) set in a sandy clay matrix. The Rickaby's Creek Gravels form an irregular basal unit of the Tertiary sediments that ranges in thickness from 2 m to 12 m and typically overlies the shales and sandstones of the Wianamatta Group.

The site is also located near a fault line associated with the formation of the Nepean River and the Blue Mountains.

4.2 Hydrogeology

The closest surface water receptor to the site is the Nepean River which is located about 1 km to the east and north of the site and, at its closest, is located about 950 m south-east of the site.

A review of the 1943 aerial photograph indicates that two creek-lines bisecting the north-eastern and south-western corners were present on-site (refer Figure 2). These creek-lines flowed north-west towards the Nepean River. A drainage channel in the south-western corner of the site is still visible. The creek in the north-eastern corner has been backfilled while the creek in the south-western corner has been partially backfilled.

A search of the NSW Department of Primary Industries Water (DPI Water) online map of registered groundwater works was undertaken as part of the investigation. The search carried out on 20 January 2021 identified no registered groundwater boreholes with groundwater information within 500 m of the site.

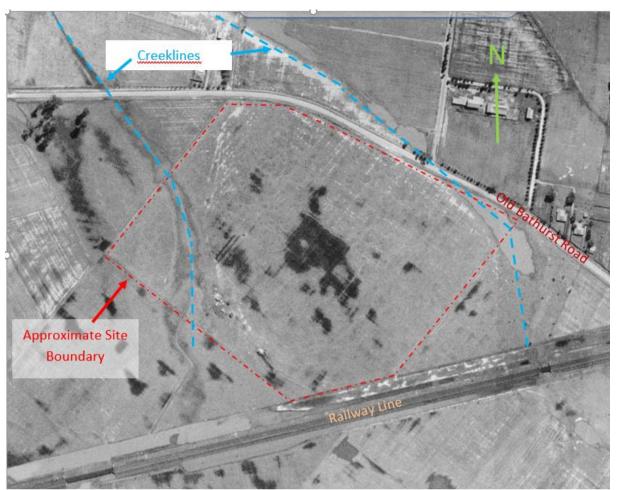


Figure 2: 1943 Aerial Photograph of the site

4.3 Soil Landscape

Reference to the Penrith 1:100 000 scale Soils Landscape Sheet indicates that the site is located within the Richmond soil landscape group. This group is characterised by alluvial soils which typically comprise deep acid red and brown podzolic soil possibly with ironstone nodules. These soils can be susceptible to erosion and localised flooding.

4.4 Acid Sulfate Soils

Review of published mapping indicates that the site is in an area of 'no known occurrence of acid sulfate soils'. The NSW Acid Sulfate Soils Manual 1998 published by the Acid Sulfate Soils Management Advisory Committee (ASSMAC) indicates that ASS (and Potential Acid Sulfate Soils – PASS) normally occur in alluvial or estuarine soils below RL 5 m AHD although occasionally are encountered up to RL 12 m AHD. Considering the ASS mapping and given that the site soils are at elevations above RL 20 m AHD it is considered unlikely that ASS is present on-site.

4.5 Salinity

The Department of Infrastructure, Planning and Natural Resources (DIPNR) "Map of Salinity Potential in Western Sydney 2002" suggests that the site is in an area of "moderate salinity potential" with a higher potential in the lower elevation areas south of the Nepean River associated with School House and Surveyors Creeks.

5. Field Work

5.1 Methods

The current field work included the following:

- Site inspection by a senior geotechnical engineer.
- Drilling of 10 boreholes (Bore 101 Bore 110) using a track-mounted rig with 110 mm and 200 mm diameter augers. The boreholes were drilled to depths of 2.5 m. Standard penetration tests (SPTs) were also completed at regular depth intervals within the overburden.
- CPTs at 22 locations (CPTs 111 to 115, 117 to 123, 125 and 127 to 135) using a ballasted truckmounted test rig to push a 35 mm diameter cone tipped probe into the soil with a hydraulic ram system. Continuous measurements were made of the end-bearing pressure on the cone tip and the friction on the sleeve located directly behind the cone. The cone tip resistance and friction readings were displayed during the test and were stored on a computer for subsequent plotting of results and interpretation. The CPTs were undertaken to practical refusal (or to a depth where excessive bending of the cone rods occurred) at depths ranging between 0.1 m and 8.4 m.

At five CPT locations (CPTs 111, 112, 118, 121 and 125) additional tests were carried out due to the excessive bending of the rods on inferred gravel.

At test locations 115, 117, 118A, 129 to 131 pre-drilling using an auger was carried out to penetrate the fill.

Disturbed samples were collected from the boreholes to assist with logging and for laboratory testing. Bulk samples were taken from some of the boreholes to enable testing to be undertaken for compaction properties and California bearing ratio (CBR).

The ground surface levels (measured in 'metres above Australian Height Datum AHD') together with the Eastings and Northings at the CPT and borehole locations were determined by using a High Precision Differential GPS which is typically accurate to approximately 0.1 m. The Eastings and Northings were taken with reference to GDA2020 datum. The locations of the CPTs and boreholes are shown on Drawing 1 in Appendix B.

5.2 Results

The detailed borehole logs and interpreted CPT logs are provided in Appendix C. Notes defining classification methods and terms used to describe the soils and rocks along with notes on the methods used for interpretation of the CPT results are provided in Appendix A. It is noted that it is sometimes difficult to distinguish between fill and natural soils. Therefore, the material types and boundaries shown on the CPT plots are interpretations only.

The subsurface conditions encountered underlying the site can be summarised as follows:

- Pavement asphaltic concrete 40 mm thick at the surface of Bores 105 and 107;
- Topsoil silty clay topsoil with vegetation to a depth of 0.1 m in Bore 110;
- Fill

 crushed rock roadbase fill (possibly stabilised or crushed concrete) to depths ranging between 0.3 m and 1.5 m in all boreholes except Bore 110 where clayey fill soils were encountered at the surface.
 - Silty clay, gravelly sand, clayey sand, sandy clay, sandy gravel or sand fill to depth ranging between 0.2 m and 2.5 m in all boreholes except Bore 103 where natural soils were encountered directly below road base fill. Inclusions of gravel, sand and concrete were encountered within the fill. Fill was inferred to depths of between 0.1 m and 1.7 m in the CPTs but may vary;
 - the fill soils were typically moderately to well compacted, however, at the base of the fill layer (or possibly the top of the natural soils) a 100 mm to 300 mm thick loose sand or soft clay layer was encountered in CPTs 111B and 125B.
- Natural Soil
 typically silty/sandy clay, or clayey/silty sand in all boreholes except Bore 101 which encountered fill to the termination depth of 2.5 m. Clayey and sandy soils were inferred to depths of between 3.3 m and 8.4 m in all CPTs except CPT118, CPT121 and CPT128 where the CPT refused on inferred gravel within the fill material. The clays were typically stiff to hard with some firm layers. The sands were typically loose to medium dense.

Free groundwater was observed at depths of 0.95 m and 1.2 m on completion of CPTs 111B and 125A, respectively. At CPTs 114, 115A, 117A, 118B, 119A, 120, 121B, 122, 123, 125 and 127 to 134 the holes collapsed to depths of between 0.1 m and 4.9 m on completion of testing. No free groundwater was observed during the drilling of the boreholes or on completion of the remaining CPTs. Backfilling of all boreholes at the completion of drilling precluded long-term monitoring of the groundwater levels. It is noted, however, that groundwater levels are affected by preceding climatic conditions and soil/rock permeability and can therefore fluctuate with time.

6. Laboratory Testing

6.1 Mechanical Testing

Selected samples from the boreholes were tested in the laboratory for measurement of plasticity and moisture content, compaction properties and CBR. The detailed results are given in Appendix D and are summarised in Table 1.

Sample Location	Material	Depth (m)	FMC (%)	ОМС (%)	MDD (t/m³)	CBR (%)	W∟ (%)	₩ _P (%)	PI (%)
Bore 101	Fill/Roadbase	0 – 0.8	10.4	14.0	1.82	180	-	-	-
Bore 103	Clayey Sand	0.3 – 1.5	8.7	12.5	1.91	13	21	14	7
Bore 105	Silty Clay	0.3 – 0.8	8.7	11.5	1.95	11	16	14	2
Bore 107	Sandy Clay	0.5 – 1.5	12.6	13.0	1.92	7	19	12	7
Bore 108	Silty Clay	0.5 – 1.5	10.4	12.5	1.91	8	-	-	-
Bore 109	Fill/Roadbase	0.0 - 0.8	12.9	14.0	1.91	100	-	-	-
Notes:	FMC =	Field Moist	ure Content		OMC =	Standa	Standard Optimum Moisture Content		
	MDD =	Maximum I	Dry Density		CBR =	Califorr	nia bearing r	atio	
	W _L =	Liquid Limi	t		W _P =	Plastic	Limit		
	PI =	Plasticity Ir	ndex						

 Table 1: Results of Laboratory Testing - Mechanical

The results of the laboratory testing indicate the following:

- The Atterberg Limit results indicate that the clayey samples were generally of low plasticity.
- The CBR values ranged between 7 % and 13 % for the natural clay and sand samples tested, and 100% and 180% for the roadbase fill samples tested.
- The field moisture contents ranged from 8.7 % to 12.6% for the clayey samples tested. The field moisture contents of the samples were between 5.3 % dry and 0.6 % wet of the plastic limit.

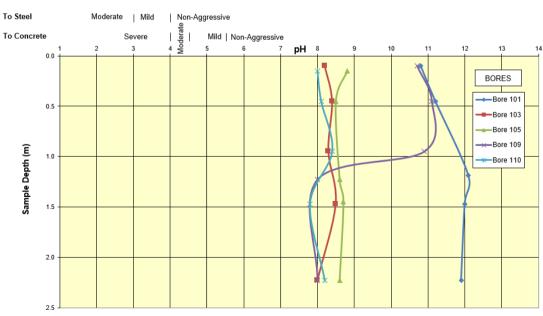
6.2 Chemical Testing

Selected samples collected from the boreholes were also tested in the laboratory for determination of aggressivity to concrete and steel, textural classification and salinity.

A result summary table (Appendix D) presents the results of laboratory tests, assessments of aggressivity to concrete and steel, textural classification, calculated salinity electrical conductivity (ECe) and salinity class inferred from ECe values using the method of Richards (1954). The detailed laboratory test reports and chain of custody information are also provided in Appendix D.

The total test sample numbers and the range of test results obtained are summarised in Table 2.

Parameter		Units	Number of Tests	Range of Results		
р	рН		25	7.8 – 12.1		
Chlo	Chlorides		4	<10 – 71		
Sulp	hates	(mg/kg)	4	<10 – 280		
Aggressivity	to Concrete	-	-	mildly aggressive		
[AS 2159]	to Steel	-	-	non-aggressive		
EC1:5	[Lab.]	(mS/cm)	25	21 - 2800		
ECe [M x EC1:5] ¹		(dS/m)	25	<2 - 40		
Salinity Class [after Richards]		-	25	Non-Saline to Highly Saline		


Table 2: Results of Laboratory Testing - Chemical

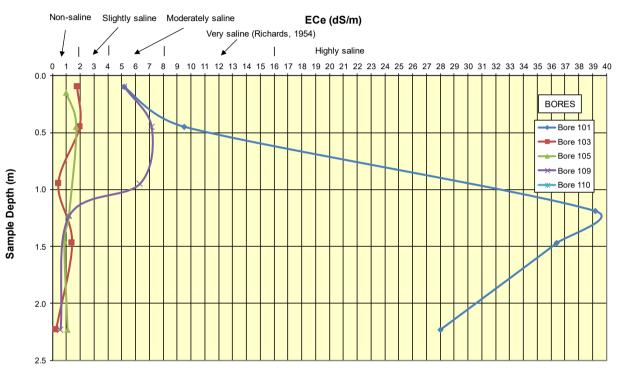
Notes: 1 M is soil textural factor

6.2.1 Aggressivity

Test results showing the aggressivity assessed by pH, EC, sulphate and chloride concentration criteria (of AS 2159) at the borehole locations, together with the aggressivity class ranges indicated in Australian Standard AS 2159, are given in Appendix D. The test results of existing fill soils and low permeable natural soils were compared to the aggressivity criteria for Condition "B" as defined by AS 2159, while the high permeable soils were compared to the aggressivity criteria for Condition "A".

The results show that the samples tested indicate the ground conditions are non-aggressive to concrete and steel with reference to AS2159. The pH profiles with depth are shown in Figure 3.

pH Profiles from Borehole Samples


Figure 3: Vertical pH Profiles

6.2.2 Salinity

Figure 4 shows the salinity classifications based on the electrical conductivity (ECe) at borehole locations, together with the salinity classifications of Richards (1954). Test results are provided in Appendix D.

The results indicate that the samples tested ranged from non-saline to highly saline.

Salinity Profiles from Borehole Samples

Figure 4: Vertical Salinity Profiles and Salinity Classes

7. Proposed Development

It is understood that the proposed development will involve the subdivision of the site into 39 lots along with the construction of a detention basin, internal road pavements and services. It is expected that light loads associated with light industrial development of up to an estimated applied load of 250 kN (a typical load for these structures) have been assumed.

It is understood that up to 1.5 m of fill and 2.2 m of cut is proposed for the site to achieve design levels ranging between RL 24.1 m and 25.7 m AHD. Localised excavations for water detention basins and drainage lines of up to 2.5 m are also proposed. Acor Consultants has estimated that approximately 24,930 m³ of cut and 105,125 m³ of fill is required to achieve site levels.

8. Geotechnical Model

DP has considered the results of this investigation, together with the results of JBS&G and Ramboll's borehole logs and well information, which are presented in Appendix E.

The geotechnical model for the site can be considered to comprise several units as follows, in increasing depth order:

• Unit 1 – Fill – typically in the range of 0.1 m to 1.5 m depth but with several localised areas where the fill has been measured up to about 3 m depth. Drawings 2 and 3 in Appendix B shows the fill depths at each test location and an interpreted heat map of the encountered fill depths.

The fill comprises a mixture of gravels and crushed concrete with clays and sand. It includes foreign materials such as reinforcement, plastic, ash and slag with some concrete fragments that are in the order of 100 - 200 mm diameter (although concrete of significantly greater size could be present). The fill required pre-drilling or excavation with a rock-hammer in order to penetrate with drilling equipment in both the DP and JBS&G investigations.

The fill appears to have been placed in piecemeal operations over many years, possibly as part of previous Rocla site operations. Compaction is variable and a 200 mm to 300 mm layer of very loose sand was identified close to the base of the fill layer at CPT111B.

The fill on-site is considered uncontrolled and should not be relied upon for uniform support of any structural loads without rectification measures to improve the consistency of the fill profile (discussed further in Section 9.3).

- Unit 2 Alluvial soils typically stiff to hard clay and loose to medium dense sand layers. The sand, silt and clay are interbedded across the site with occasional gravel. Some firm to stiff clay and minor (100 mm to 200 mm thick) soft clay layers were identified at three CPT locations (119, 125A and 127) within the upper alluvial soil profile.
- Unit 3 Gravels gravels within a clay or soil matrix were encountered from depths of between 3.3 m and 8.4 m. These gravels were described as being up to 150 mm in diameter (cobble size) but may have been broken down during the drilling process and be of significantly greater diameter. The Geology of Penrith 1:100 000 notes indicate that the gravels can be up to 0.5 m in diameter with silcrete boulders also embedded within the gravels. The gravels were typically medium dense or dense.
- Unit 4 Bedrock shale bedrock was encountered in one Ramboll borehole at 12 m depth. The bedrock in the area is typically low strength (or stronger) with occasional pockets of weathered bedrock.

Groundwater was not encountered during drilling of the boreholes in DPs investigation. The free groundwater identified at depths of 0.95 m and 1.2 m within two CPT holes is anticipated to be perched within the fill profile. The results of the Ramboll and JBS&G investigations indicate groundwater levels to be in the range of 6.6 m to 7.4 m (RL 17.4 to 17.9 m AHD). These groundwater levels suggest groundwater flows to the north. Groundwater levels can fluctuate with climatic variations.

9. Comments

9.1 General

The major geotechnical consideration for development of the site is the presence of the uncontrolled fill and the potential for differential settlements over time. The existing fill material on-site is variable in its thickness, composition and compaction and is expected to perform variably if relied upon for support of any building loads in its current state.

The underlying natural soils are also variable and contain some soft to firm bands in the upper profile, which may be expected in an alluvial environment. However, the identified soft to firm bands are relatively minor (100 mm to 200 mm thick) and localised (only identified at three locations).

It is also understood that site levels will need to be raised by up to 1.5 m.

Council planners have also advised that the risk of total and differential settlement due to the presence of uncontrolled fill is unacceptable. Therefore, to reduce the risk of total and differential settlement a remedial approach is recommended to be adopted and is outlined in Section 9.3.

Foundation support will be dependent on the magnitude of loads applied which will not be known until the performance requirements are known and the design of the structure has commenced. Light industrial structures may be able to be supported by a shallow footing system (e.g. spread footings or raft slabs). Larger structural loads will need to be supported on piles, particularly for concentrated column and wall loads.

Further investigation of the allotments will be required once the details of the development and the general approach to supporting the structures are known.

9.2 Excavations

Bulk excavation to depths of 2.5 m is expected for the site development and will encounter fill and natural soils (Geotechnical Units 1 to 2).

Excavation within the fill and natural soils should be readily achievable by bulldozer blade or an excavator with bucket attachment. Some light to medium ripping assistance or the careful use of rock hammers, grinders or rock saws may be required for fill layers that include recycled concrete, similar to what was encountered in the investigation.

All excavated materials that will be removed from site will need to be disposed of in accordance with current EPA policies. Environmental testing will need to be carried out to classify spoil prior to transport from the site. The type and extent of testing undertaken will depend on the final use or destination of the spoil, and the requirements of the receiving site.

It is further understood that any excavations on-site would need the prior approval of Council and the Site Auditor.

The bulk excavation level for the development appears to be above the expected groundwater level, however, there may be some seepage of perched groundwater into excavations encountered at the

interface between the fill and natural soils or after a prolonged period of wet weather. Such seepage may need to be collected during construction by the judicious placement of drainage sumps and by intermittent pumping. At this stage, it is not possible to estimate the likely extent and rate of seepage although it is anticipated that it should be readily handled by sump and pump measures.

9.3 Site Preparation and Remediation of Existing Fill

The following remedial measures are recommended to manage the risks associated with the existing uncontrolled fill on the site:

- Zones of existing fill with a depth greater than 0.5 m should be excavated to remove all uncontrolled fill and encounter the underlying natural soil profile (refer to interpreted fill depth heatmap presented in Drawing 3 of Appendix B for a guide of fill depths across the site).
- Backfill excavations where uncontrolled fill was removed with controlled fill to provide a level platform with surrounding (unexcavated) portions of the site;
- Zones of existing fill with a depth of less than 0.5 m may be left in place and compacted using high energy impact compaction (HEIC). HEIC is a ground improvement method involving a three or five sided 'roller' drum (impact roller). Past experience has indicated that this method can improve clayey material up to a depth of 1.0 1.5 m. HEIC may also identify any localised deeper soft spots in the underlying natural soil;

Vibrations are a side effect of the HEIC method and a specialist contractor should be consulted to develop a construction methodology for the site to effectively reduce vibration levels on adjoining sites; and

• Place additional fill across the site as required to further raise site levels.

As a part of the above remedial measures, and for any fill placement required for the development, the following should be adhered to:

- Remove any deleterious, soft, wet or highly compressible material or material rich in organics or root matter (such as topsoils) encountered during stripping works across the site. Topsoil materials should be separately stockpiled for use in landscaping or removed off site;
- Prior to any filling works, roll the exposed surface with at least six passes of a minimum 12 tonne deadweight smooth drum roller, with a final test roll accompanied by a geotechnical professional to confirm that any deleterious materials such as soft, wet or highly compressible soil and any organics are identified and removed;
- New fill should be placed in layers of 250 mm maximum loose thickness compacted to at least 98% Standard, increasing to 100% Standard within the upper 0.3 m of the subgrade. Moisture contents should be maintained within the range OMC – 3% to OMC +1%, where OMC is the optimum moisture content measured in the Standard compaction test;
- New fill should be free of oversize particles (>75mm) and deleterious material;
- New fill beneath the industrial lots should comprise either a high-quality ripped sandstone or recycled concrete with a CBR value greater that 15%, Plasticity Index less than 15% and Emerson Class No. of 4 or greater. Existing materials on-site may be suitable if appropriately modified (i.e. with cement or lime as appropriate);

- Moisture conditioning of clay soils may be required if soils are saturated or dry. Moisture conditioning of saturated soils would involve drying in 'sunny and windy' weather, blending with other drier materials or lime stabilisation. Where the soil is dry, it is expected that this will involve either tyning or excavation with the addition of water to increase the moisture content;
- Promptly cover any exposed clay at subgrade level with a minimum 150 mm of select granular fill (minimum CBR 15%) to reduce potential wetting and drying and trafficability problems; and
- New fill required to achieve design levels for support of any on-ground slabs and/or structural loads will need to be carried out under Level 1 testing conditions as defined in AS 3798–2007 "Guidelines on Earthworks for Commercial and Residential Developments". Level 1 testing is also recommended for fill materials beneath pavements, recreational and landscaping areas.

The existing fill should be suitable for re-use from a geotechnical perspective provided that any deleterious and oversized materials are removed during placement.

The above procedures will require geotechnical inspection and testing services during construction.

Remediation of the existing fill as described above will allow the Structural engineer to design an appropriate foundation system for the site.

9.4 Foundations

Foundation support options will be dependent on the magnitude of loads applied which will not be known until the performance requirements are known and the design of the structure has commenced. Light industrial structures may be able to be supported by a shallow footing system (e.g. spread footings or raft slabs). Larger structural loads will need to be supported by piles, particularly for concentrated column and wall loads.

9.4.1 Pile Foundations

All structural loads will need to be supported on a uniform founding layer.

Suitable piled footings are expected to include friction-based piles such as continuous flight augered (CFA) piles or concrete screw piles (such as the 'Atlas' or 'Omega' pile types) founded in Units 2, 3 or 4. All footings in one structure should be founded on the same strata to achieve uniform founding conditions and limit the potential for differential movement between different parts of the structure.. Driven piles may also be considered, however, pre-drilling may be required.

These pile types support the ground during installation to limit the effect of collapsing ground conditions from sand lenses and groundwater, however, are "blind" piling techniques and require significant ground investigation works to characterise the ground conditions prior to additional investigation. In particular, the top of Unit 3 (Gravels) is inferred to be encountered close to the refusal depths of the CPTs which is variable in depth at between 3.3 m and 8.4 m and would need further verification in the form of conventional boreholes (particularly at the locations of shallower refusal). Information on the depth to Unit 4 (Bedrock) is also limited and would need to be verified with the completion of deeper cored boreholes.

Therefore, the preliminary design of piles, for axial compression loading may be based on the maximum Limit State Design or Working Stress parameters given in Table 3.

	Working Stress D	esign Values	Limit State Des	Elastic Modulus (MPa)	
Unit	Allowable End Bearing Pressure (kPa)	Shaft Adhesion (kPa)	Ultimate End Bearing Pressure (kPa)	Shaft Adhesion (kPa)	(a)
Alluvial Soils – at least stiff (or medium dense) (Unit 2)	300	50	600	100	50
Gravel (Unit 3)	1000	75	2000	150	250
Low (or Stronger) Strength Siltstone (Unit 4) ¹	2000	100	4000	200	300

Table 3: Preliminary Foundation Design Parameters

Note: 1.Preliminary parameters and subject to Core Drilling to confirm the rock depth, strength and consistency.

The total (long-term) settlement of a piled footing designed using the allowable parameters provided in this report should be less than about 1% of the pile diameter upon application of the design dead load. Serviceability analysis should be undertaken if the ultimate bearing pressures (incorporating a suitable reduction factor) are used to proportion the piles.

For uplift or tension loading, 60% of the above shaft adhesion parameters may be adopted for design purposes. In addition to traditional 'piston pull-out' or sidewall slip failure mechanisms, the uplift capacity should be checked for 'cone pull-out' failure modes. This should be based on AS4678-2002 "Earth-retaining Structures". Uplift capacity for groups of piles will need to consider interaction between piles, which will generally lead to a lesser capacity than the sum of the capacity of individual piles in the group.

Foundation excavations should be inspected by an experienced geotechnical professional prior to pouring concrete to confirm that the material is adequate for the required bearing pressure.

Further investigation will be required for foundation design, however the type and extent of further investigation will be dependent on the structure nominated and the associated magnitude of loads.

9.4.2 Shallow Foundations

Shallow footings (e.g. pad or strip footings) founded on controlled fill (or remediated fill as per the requirements in Section 9.3) or stiff or stronger natural soils could be designed for an allowable bearing pressure of 150 kPa.

Settlement of a footing is dependent on the loads applied to the footing/pile and the foundation conditions. The total settlement of a footing designed using the above allowable pressure should be less than 1% of the footing width upon application of the design load.

Testing of all footings should be carried out by an experienced geotechnical engineer. Localised removal of any identified unsuitable fill may be required.

Raft slabs may also be suitable where the design can consider potential differential settlements caused by variations of building loadings. A piled raft foundation may be considered to minimise differential settlements. Further geotechnical advice will be required in relation to the design of both raft slabs and possibly piled raft slabs once the column layout and loadings are available.

The modulus of subgrade reaction value for a raft slab will vary with the size of the loaded area. Design of raft foundations will require modelling of the distribution of the loads over the slab area.

9.5 Seismic Design

In accordance with Part 4 of the Structural design actions Standard, AS1170.4 – 2007, it is assessed that the site will have a Sub-Soil Class of " C_e " following successful earthworks activities (refer to Section 9.3). This is in accordance with the definitions presented in Section 4.2 – Class Definitions.

9.6 Floor Slabs

Where the building is to be designed with a suspended floor slab, site preparation measures will be minimal. If slabs are to be cast on ground (but designed as suspended slabs), then checks should be made to ensure that concrete is not poured onto softened or wet ground that could lead to deformation of the slab.

Where site preparation is undertaken in accordance with Section 9.3, on-grade slabs could be constructed in place of suspended slabs. On-grade floor slabs should be cast independently of pads or pile and beam footings and incorporate control joints to allow for differential movements. Edge protection, such as deepened stiffening edge beams in conjunction with surface paving should also be included to minimise the effects of reactivity movements.

9.7 Pavements

Laboratory testing for CBR and compaction was carried out on samples recovered from the subgrade soils over the site. CBR values ranging between 7% and 13% were obtained for the natural clay and samples tested. CBR values of 100% and 180% were obtained for samples of the roadbase materials tested. Allowing for variability of results, it is suggested that the design of pavements be based on a design CBR value of 7%. If imported material is used to level the site and form subgrade levels, the design CBR value will depend on the type and depth of imported material. Pavements should be placed on a subgrade prepared in accordance with the recommendations provided in Section 9.3.

The design CBR value given above depends on the provision of adequate surface and subsoil drainage to maintain the subgrade as close to OMC as possible. Subsoil drainage should be installed to not less than 500 mm depth below subgrade level adjacent to the pavement. Preparation of subgrade surfaces should be such that adequate cross-falls for the surface drainage purposes are achievable across the final pavement.

9.8 Salinity

9.8.1 Impact of the Saline Soils on the Proposed Development

The presence of saline soils are naturally occurring features of the local landscape and of the overlying fill soils. The very saline soils encountered on-site are considered unusually high. The Salinity Management Plan outlined in Section 9.9.2 has outlined risk management measures for the range of saline soils encountered on-site (including very saline soils). Further investigation may revise the salinity classification and zone the salinity of site soils across the site and have appropriate treatment measures for each zone.

They are not considered significant impediments for future redeveloped of the Site, provided appropriate remediation or management techniques are employed.

Salinity and aggressivity affects the durability of concrete and steel by causing premature breakdown of concrete and corrosion of steel. This has impacts on the longevity of structures in contact with these materials. As a result management will be required.

9.8.2 Salinity Management Plan

The presence of saline soils on-site is a naturally occurring feature of the local landscape that is not considered significant impediments for future redeveloped of the Site, provided appropriate remediation or management techniques are employed.

A salinity management plan to limit the impact of saline soils on-site, including strategies for service installation, building construction and roads and associated infrastructure will be required.

The current salinity investigation indicates that materials within the site range from non-saline to moderately within near-surface soils (within 0.3 m of the existing ground surface) generally non-saline to moderately saline with moderately to very saline soils encountered in soils deeper than 0.3 m. Testing of other parameters associated with salinity indicates that the materials are non – aggressive to concrete and steel. Based on experience in the area, natural soils are assumed to be highly sodic.

The amount of information regarding the distribution of salinity across the site is limited. Therefore, the management strategies assume the most conservative approach of very saline soils being present across the site. Further investigation may be able to delineate areas of lower salinity, however, given known salinity in surrounding areas it is likely that very saline soils will probably be encountered elsewhere on-site.

The following management strategies are confined to the management of those factors with a potential to impact on the development:

- A. Management should focus on capping of the upper surface of the sodic soils, both exposed by excavation and placed as fill, with a more permeable material to prevent ponding, to reduce capillary rise, to act as a drainage layer and to reduce the potential for erosion.
- B. With respect to any required imported fill, testing should be undertaken prior to importation, to determine the salinity characteristics of the material, which should not be greater than mildly-aggressive and, where possible, but should not be greater than "moderately saline" in classification.

- C. Sodic soils can also be managed by maintaining vegetation where possible and planting new salt tolerant species. The addition of organic matter, gypsum and lime can also be considered where appropriate. After gypsum addition, reduction of sodicity levels may require some time for sufficient infiltration and leaching of sodium into the subsoils, however capping of exposed sodic material should remain the primary management method. Topsoil added at the completion of construction is, in effect, also adding organic matter which may help infiltration and leaching of sodium.
- D. Avoiding water collecting in low lying areas, in depressions, or behind fill. This can lead to water logging of the soils, evaporative concentration of salts, and eventual breakdown in soil structure resulting in accelerated erosion.
- E. Any pavements should be designed to be well drained of surface water. There should not be excessive concentrations of runoff or ponding that would lead to waterlogging of the pavement or additional recharge to the groundwater through any more permeable zones in the underlying filling material.
- F. Surface drains should generally be provided along the top of batter slopes to reduce the potential for concentrated flows of water down slopes possibly causing scour.
- G. Salt tolerant grasses and trees should be considered for landscaping in the drainage reserve, to reduce soil erosion and to maintain the existing evapo transpiration and groundwater levels. Reference should be made to an experienced landscape planner or agronomist.

The above strategies should be considered in conjunction with the erosion controls outlined in Landcom, *Soils and Construction, Managing Urban Stormwater, Volume 1, 4th Edition, March 2004.*

The following additional strategies are recommended for completion of service installation and for building construction. These strategies should be complementary to standard good building practices recommended within the Building Code of Australia, including cover to reinforcement within concrete and correct installation of a brick damp course (where used), so that it cannot be bridged to allow moisture to move into brick work and up the wall.

Based on the results of this investigation, soils underlying the site were identified as non-aggressive to concrete, moderately aggressive in the upper 0.3 m of the site with underlying very saline soils. As such, the durability requirements provided in Tables 4 and 5 (below and following page) should be taken into account by the designer.

		Recommended Durability Requirement (as per AS3600)			
Site Salinity Classification	Site Soil Aggressivity to Concrete Classification	Minimum Concrete Strength (MPa)	Minimum Cover to Reinforcement (mm)	Minimum Cure Time (days)	
Non-saline	Non-Aggressive	25	45	3	
to Moderately Saline					

Table 4: Recommended Durability Requirements for Concrete Foundations and Structures

		Recommended Durability Requirement (as per AS3600)			
Site Salinity Classification	Site Soil Aggressivity to Concrete Classification	Minimum Concrete Strength (MPa)	Minimum Cover to Reinforcement (mm)	Minimum Cure Time (days)	
(up to 0.3 m below existing surface levels)					
Non-saline to Very Saline (greater than 0.3 m below existing surface levels)	Non-Aggressive	40	55	7	

Table 5: Recommended Durability Requirements for Concrete Piles

	Recommended Durability Requirement (as per AS2159)	
Concrete Aggressivity (refer Figure 11)	Minimum Concrete Strength (MPa)	Minimum Cover to Reinforcement (mm)
Non-aggressive	25	65

- I. Wet cast concrete pipes and currently manufactured spun concrete pipes are understood to have estimated compressive strengths of 50 MPa and 60 70 MPa, respectively, in excess of the requirements for mass concrete in H to J above. Reference to the maximum and minimum test results of Table 4 (Section 6.2 of this report) and to Tables E1 and 3.1 of AS 4058 2007 "Precast concrete pipes" indicates that the site falls within the AS 4058 Clay/Stagnant (low sulphate) soil type (chlorides <=20,000 ppm, pH>=4.5 and sulphates <=1,000 ppm) and (in the absence of tidal water flow) falls within the AS 4058 Normal durability environment. Under these conditions, AS 4058-compliant reinforced concrete pipes of general purpose Portland cement, with a minimum cover to reinforcement of 10 mm, are expected to have a design life in excess of 100 years. Any concrete pipes installed within the site should employ AS 4058-compliant steel reinforced pipes of general purpose Portland cement, or should be fibre reinforced.</p>
- J. In all masonry buildings a brick damp course should be installed so that it cannot be bridged either internally or externally. This will limit the potential for moisture moving into brickwork and up the wall.

9.9 Site Drainage

Surface and subsurface drainage will be required across the entire site, beneath buildings, pavements, hardstands. Water, including stormwater, can introduce additional moisture into the fill which can enhance settlements. Therefore, it is prudent to provide suitable site drainage.

10. Further Investigation

This geotechnical investigation has been carried out to give a broad appreciation of site conditions across the site. It is anticipated that once development details have been finalised and the site layout has been determined further geotechnical investigation and advice will be required to provide detailed information to optimise design.

Specific geotechnical investigations would include (but not necessarily be limited to):

- Detailed geotechnical investigations using test pit methods to assess the extent and conditions of existing fill on-site;
- Further CPTs to assess the variability of natural soils on each industrial allotment to allow for foundation design; and
- The drilling of deeper conventional boreholes to confirm the depth the Gravel and Bedrock Units across the site.

11. References

- AS 1170 (2007) Structural Design Actions, Part 4: Earthquake Actions in Australia, Standards Australia
- AS 1726 (2017) Geotechnical Site Investigations, Standards Australia
- AS 2159 (2009) Piling Design and Installation, Standards Australia
- AS 2870 (2011) Residential Slabs and Footings, Standards Australia
- AS3600 (2018) Concrete Structures, Standards Australia
- AS 3798 (2007) *Guidelines on Earthworks for Commercial and Residential Developments*, Standards Australia
- AS 4678 (2002) Earth-retaining Structures, Standards Australia
- Clark and Jones (1991) Penrith 1: 100 000 Geological Sheet 9030 1st edition, Geological Survey of New South Wales, Sydney
- Department of Infrastructure, Planning and Natural Resources, *Salinity Potential in Western Sydney* (2002), NSW Government.
- Department of Land and Water Conservation (DLWC) publication "Site Investigation for Urban Salinity" (2002)
- Landcom (2004), Soils and Construction, Managing Urban Stormwater, Volume 1, 4th Edition,
- NSW Department of Minerals and Energy, Penrith Geological Series Sheet No 9030 (1991), NSW Government.
- Richards, L. A. (ed.) (1954), Diagnosis and Improvement of Saline and Alkaline Soils, USDA Handbook No. 60, Washington D.C.

12. Limitations

Douglas Partners Pty Ltd (DP) has prepared this report for this project at 158-164 Old Bathurst Road, Emu Plains in accordance with DP's email proposal dated 25 September 2023and acceptance received from Ms Ruma McCracken of Penrith City Council dated 25 September 2023. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Penrith City Council for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached notes and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Douglas Partners Pty Ltd

Appendix A

About This Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

- In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;
- A localised, perched water table may lead to an erroneous indication of the true water table;

- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

continued next page

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

intentionally blank

intentionally blank

Terminology, Symbols and Abbreviations

Douglas Partners' reports, investigation logs, and other correspondence may use terminology which has quantitative or qualitative connotations. To remove ambiguity or uncertainty surrounding the use of such terms, the following sets of notes pages may be attached Douglas Partners' reports, depending on the work performed and conditions encountered:

- Soil Descriptions;
- Rock Descriptions; and
- Sampling, insitu testing, and drilling methodologies

In addition to these pages, the following notes generally apply to most documents.

Abbreviation Codes

Site conditions may also be presented in a number of different formats, such as investigation logs, field mapping, or as a written summary. In some of these formats textual or symbolic terminology may be presented using textual abbreviation codes or graphic symbols, and, where commonly used, these are listed alongside the terminology definition. For ease of identification in these note pages, textual codes are presented in these notes in the following style Xw. Code usage conforms with the following guidelines:

- Textual codes are case insensitive, although herein they are generally presented in upper case; and
- Textual codes are contextual (i.e. the same or similar combinations of characters may be used in different contexts with different meanings (for example PL is used for plastic limit in the context of soil moisture condition, as well as in PL(A) for point load test result in the testing results column)).

Data Integrity Codes

Subsurface investigation data recorded by Douglas Partners is generally managed in a highly structured database environment, where records "span" between a top and bottom depth interval. Depth interval "gaps" between records are considered to introduce ambiguity, and, where appropriate, our practice guidelines may require contiguous data sets. Recording meaningful data is not always appropriate (for example assigning a "strength" to a concrete pavement) and the following codes may be used to maintain contiguity in such circumstances.

Term	Description	Abbreviation Code
Core loss	No core recovery	KL
Unknown	Information was not available to allow classification of the property. For example, when auguring in loose, saturated sand auger cuttings may not be returned.	UK
No data	Information required to allow classification of the property was not available. For example if drilling is commenced from the base of a hole predrilled by others	ND
Not Applicable	Derivation of the properties not appropriate or beyond the scope of the investigation. For example providing a description of the strength of a concrete pavement	NA

Graphic Symbols

Douglas Partners' logs contain a "graphic" column which provides a pictorial representation of the basic composition of the material. The symbols used are directly representing the material name stated in the adjacent "Description of Strata" column, and as such no specific graphic symbology legend has been provided in these notes.

intentionally blank

August 2020

Introduction

All materials which are not considered to be "in-situ rock" are described in general accordance with the soil description model of AS 1726-2017 Part 6.1.3, and can be broken down into the following description structure:

The "classification" comprises a two character "group symbol" providing a general summary of dominant soil characteristics. The "name" summarises the particle sizes within the soil which most influence it's behaviour. The detailed description presents more information about the soil's composition, condition, structure, and origin.

Classification, naming and description of soils requires the relative proportion of particles of different sizes within the whole soil mixture to be considered.

Particle size designation and Behaviour Model

Solid particles within a soil are differentiated on the basis of size.

The engineering behaviour properties of a soil can subsequently be modelled to be either "fine grained" (also known as "cohesive" behaviour) or "coarse grained" ("non cohesive" behaviour), depending on the relative proportion of fine or coarse fractions in the soil mixture.

Particle	Particle	Behaviour Model		
Size Fraction	Size (mm)	Behaviour	Approximate Dry Mass	
Boulder	>200	Excluded from particle beh-		
Cobble	63 - 200	aviour model as "oversize"		
Gravel ¹	2.36 - 63	Coarse	>65%	
Sand ¹	0.075 - 2.36	Coarse	×00%	
Silt	0.002 - 0.075	Fine	>35%	
Clay	<0.002	гше	>30%	

- refer grain size subdivision descriptions below

The behaviour model boundaries defined above are not precise, and the material behaviour should be assumed from the name given to the material (which considers the particle fraction which dominates the behaviour, refer "component proportions" below), rather than strict observance of the proportions of particle sizes. For example, if a material is named a "Sandy CLAY", this is indicative that the material exhibits fine grained behaviour, even if the dry mass of coarse grained material may exceed 65%.

Component proportions

The relative proportion of the dry mass of each particle size fraction is assessed to be a "primary", "secondary", or "minor" component of the soil mixture, depending on it's influence over the soils behaviour.

Component	Definition ¹	Relative F	Proportion
Proportion Designation		In Fine Grained Soil	In Coarse Grained Soil
Primary	The component (particle size designation, refer above) which dominates the engineering behaviour of the soil	The clay/silt component with the greater proportion	The sand/gravel component with the greater proportion
Secondary	Any component which is not the primary, but is significant to the engineering properties of the soil	Any component with greater than 30% proportion	Any granular component with greater than 30%; or
			Any fine component with greater than 12%
Minor ²	Present in the soil, but not significant to it's engineering properties	All other components	All other components

¹ – As defined in AS1726-2017 6.1.4.4

 2 – in the detailed material description, minor components are split into two further sub categories. Refer "identification of minor components" below

Composite Materials

In certain situations a lithology description may describe more than one material, for example, collectively describing a layer of interbedded sand and clay. In such a scenario, the two materials would be described independently, with the names preceded or followed by a statement describing the arrangement by which the materials co-exist. For example "INTERBEDDED Silty CLAY AND SAND".

Classification

The soil classification comprises a two character group symbol. The first symbol identifies the primary component. The second symbol identifies either the grading or presence of fines in a coarse grained soil, or the plasticity in a fine grained soil. Refer AS1726-2017 6.1.6 for further clarification.

Soil Name

For most soils the name is derived with the primary component included as the noun (in upper case), preceded by any secondary components stated in an adjective form. In this way the soil name also describes the general composition and indicates the dominant behaviour of the material.

Component ¹	Prominence in Soil Name
Primary	Noun (eg "CLAY")
Secondary	Adjective modifier (eg "Sandy")
Minor	No influence

¹ – for determination of component proportions, refer component proportions on previous page

For materials which cannot be disaggregated, or which are not comprised of rock or mineral fragments, the names "ORGANIC MATTER" or "ARTIFICIAL MATERIAL" may be used, in accordance with AS1726-2017 Table 14.

Commercial or colloquial names are not used for the soil name where a component derived name is possible (for example "Gravelly SAND" rather than "CRACKER DUST").

Identification of minor components

Minor components are identified in the soil description immediately following the soil name. The minor component fraction is usually preceded with a term indicating the relative proportion of the component.

Minor Component	Relative Proportion		
Proportion Term	In Fine Grained Soil	In Coarse Grained Soil	
With	All fractions: 15-30%	clay/silt: 5-12%	
		sand/gravel: 15-30%	
Trace	All fractions: 0-15%	clay/silt: 0-5%	
		sand/gravel: 0-15%	

Soil Composition

Descriptive Term	Laboratory liquid limit range		
i on in	Silt Clay		
Non-plastic	Not	Not	
materials	applicable	applicable	
Low plasticity	≤50	≤35	
Medium	Not	>35 and ≤50	
plasticity	applicable		
High plasticity	>50	>50	

Note, Plasticity descriptions generally describe the plasticity behaviour of the whole of the fine grained soil, not individual fine grained fractions.

Grain Size

\simeq			
	Туре		Particle size (mm)
	Gravel	Coarse	19 - 63
		Medium	6.7 - 19
		Fine	2.36 - 6.7
	Sand	Coarse	0.6 - 2.36
		Medium	0.21 - 0.6
		Fine	0.075 - 0.21

<u>Grading</u>

Grading Term	Particle size (mm)	
Well	A good representation of all	
	particle sizes	
Poorly	An excess or deficiency of	
	particular sizes within the	
	specified range	
Uniformly	Essentially of one size	
Gap	A deficiency of a particular	
	particle size with the range	

Note, AS1726-2017 provides terminology for additional attributes not listed here.

intentionally blank

Soil Condition

Moisture

The moisture condition of soils is assessed relative to the plastic limit for fine grained soils, while for coarse grained soils it is assessed based on the appearance and feel of the material. The moisture condition of a material is considered to be independent of stratigraphy (although commonly these are related), and this data is presented in its own column on logs.

Applicability	Term	Tactile Assessment	Abbreviation code
Fine	Dry of plastic limit	Hard and friable or powdery	<pl< td=""></pl<>
	Near plastic limit	Can be moulded	≈PL
	Wet of plastic limit	Water residue remains on hands when handling	>PL
	Near liquid limit	"oozes" when agitated	≈LL
	Wet of liquid limit	"oozes"	>LL
Coarse	Dry	Non-cohesive and free running	D
	Moist	Feels cool, darkened in colour, particles may stick	Μ
		together	
	Wet	Feels cool, darkened in colour, particles may stick	W
		together, free water forms when handling	

The abbreviation code NDF, meaning "not-assessable due to drilling fluid use" may also be used.

Note, observations relating to free ground water or drilling fluids are provided independent of soil moisture condition.

Consistency/Density/Compaction/Cementation/Extremely Weathered Rock

These concepts give an indication of how the material may respond to applied forces (when considered in conjunction with other attributes of the soil). This behaviour can vary independent of the composition of the material, and on logs these are described in an independent column and are generally mutually exclusive (i.e it is inappropriate to describe both consistency and compaction at the same time). The method by which the behaviour is described depends on the behaviour model and other characteristics of the soil as follows:

- In fine grained soils, the "consistency" describes the ease with which the soil can be remoulded, and is generally correlated against the materials undrained shear strength;
- In granular materials, the relative density describes how tightly packed the particles are, and is generally correlated against the density index;
- In anthropogenically modified materials the compaction of the material is described qualitatively;
- In cemented soils (both natural and anthropogenic), the cemented "strength" is described qualitatively, relative to the difficulty with which the material is disaggregated; and
- In soils of extremely weathered rock origin, the engineering behaviour may be governed by relic rock features, and expected behaviour needs to be assessed based the overall material description

Quantitative engineering performance of these materials may be determined by laboratory testing, or estimated by correlated field tests (for example penetration or shear vane testing), or by tactile methods, as appropriate.

Consistency Term	Tactile Assessment	Undrained Shear Strength (kPa)	Abbreviation Code
Very soft	Extrudes between fingers when squeezed	<12	VS
Soft	Mouldable with light finger pressure	>12 - ≤25	S
Firm	Mouldable with strong finger pressure	>25 - ≤50	F
Stiff	Cannot be moulded by fingers	>50 - ≤100	ST
Very stiff	Indented by thumbnail	>100 - ≤200	VST
Hard	Indented by thumbnail with difficulty	>200	Н
Friable	Easily crumbled or broken into small pieces by hand	-	FR

Consistency (fine grained soils)

Relative Density (coarse grained soils)

Tactile assessment of relative density is difficult, and generally requires penetration testing, hence a tactile assessment guide is not provided.

Relative Density Term	Density Index	Abbreviation Code
Very loose	<15	VL
Loose	>15-≤35	L
Medium dense	>35-≤65	MD
Dense	>65-≤85	D
Very dense	>85	VD

Compaction (anthropogenically modified soil)
--

Compaction Term	Abbreviation Code
Well compacted	WC
Poorly compacted	PC
Moderately compacted	MC
Variably compacted	VC

Cementation (natural and anthropogenic)

Cementation Term	Abbreviation Code
Moderately cemented	MCE
Weakly cemented	WKCE
Cemented	CE
Strongly bound	SB
Weakly bound	WB
Unbound	UB

Extremely Weathered Rock

AS1726-2017 considers weathered rock material to be soil if the unconfined compressive strength is less than 0.6 MPa (i.e. very low strength rock). These materials may be identified as "extremely weathered rock" in reports and by the abbreviation code XWR on log sheets. This identification is not correlated to any specific qualitative or quantitative behaviour, and the engineering properties of this material must therefore be assessed according to engineering principles with reference to any relic rock structure, fabric, or texture described in the description.

Soil Origin

Term	Description	Abbreviation Code
Residual	Derived from in-situ weathering of the underlying rock	RES
Extremely weathered material	Formed from in-situ weathering of geological formations. Has strength of less than 'very low' as per as1726 but retains the structure or fabric of the parent rock.	XWM
Alluvial	Deposited by streams and rivers	ALV
Estuarine	Deposited in coastal estuaries	EST
Marine	Deposited in a marine environment	MAR
Lacustrine	Deposited in freshwater lakes	LCS
Aeolian	Carried and deposited by wind	AEO
Colluvial	Soil and rock debris transported down slopes by gravity	COL
Topsoil	Mantle of surface soil, often with high levels of organic material	TOP
Fill	Any material which has been moved by man	FILL
Littoral	Deposited on the lake or sea shore	LIT
Unidentifiable	Not able to be identified	UID

Cobbles and Boulders

The presence of particles considered to be "oversize" may be described using one of the following strategies:

- Oversize encountered in a minor proportion (when considered relative to the wider area) are noted in the soil description; or
- Where a significant proportion of oversize is encountered, the cobbles/boulders are described independent of the soil description, in a similar manner to composite soils (described above) but qualified with "MIXTURE OF".

intentionally blank

Rock Strength

Rock strength is defined by the unconfined compressive strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $I_{s(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Unconfined Compressive Strength (MPa)	Point Load Index ¹ I _{s(50)} MPa	Abbreviation Code
Very low	0.6 - 2	0.03 - 0.1	VL
Low	2 - 6	0.1 - 0.3	L
Medium	6 - 20	0.3 - 1.0	Μ
High	20 - 60	1 - 3	Н
Very high	60 - 200	3 - 10	VH
Extremely high	>200	>10	EH

¹ Assumes a ratio of 20:1 for UCS to $I_{s(50)}$. It should be noted that the UCS to $I_{s(50)}$ ratio varies significantly for different rock types and specific ratios may be required for each site.

On investigation logs only, the following data contiguity codes may be in rock strength tables for layers or seams of material "within rock", but for which the equivalent UCS strength is less than 0.6 MPa.

Scenario	
The material encountered has an equivalent UCS strength of less than 0.6 MPa, and therefore is considered to be soil (as per Note 1 of Table 20 of AS 1726-2017). The properties of the material encountered over this interval are described in the "Description of Strata" and soil properties columns.	SOIL
The material encountered has an equivalent UCS strength of less than 0.6 MPa, and therefore is considered to be soil (as per Note 1 of Table 20 of AS 1726-2017). The prominence of the material is such that it can be considered to be a seam (as defined in Table 22 of AS1726-2017) and the properties of the material are described in the defect column.	

Degree of Weathering

The degree of weathering of rock is classified as follows:

Weathering Term	Description	Abbreviation Code
Residual Soil ^{1,2}	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	RS
Extremely weathered ^{1,2}	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible	XW
Highly weathered	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.	HW
Moderately weathered	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.	
Slightly weathered	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	SW
Fresh	No signs of decomposition or staining.	FR
Note: If HW an	d MW cannot be differentiated use DW (see below)	
Distinctly weathered	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.	DW

¹ – AS1726-2017 6.1.9 provides similar definitions for "residual soil" and "extremely weathered material" as soil origins. Generally, the soil origin terms would be used above the depth at which very low strength or stronger rock material is first encountered, while both soil origin and weathering should may be stated for soil encountered below the first contact with rock material, where appropriate.

 2 –The parent rock type, of which the residual/extremely weathered material is a derivative, will be stated in the description (where discernible).

Degree of Alteration

The degree of alteration of the rock material (physical or chemical changes caused by hot gasses or liquids at depth) is classified as follows:

Term	Description	Abbreviation Code
Extremely altered	Material is altered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.	XA
Highly altered	The whole of the rock material is discoloured, usually by staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is changed by alteration. Some primary minerals are altered to clay minerals. Porosity may be increased by leaching, or may be decreased due to precipitation of secondary materials in pores.	HA
Moderately altered	The whole of the rock material is discoloured, usually by staining or bleaching to the extent that the colour of the original rock is not recognisable but shows little or no change of strength from fresh rock.	MA
Slightly altered	Rock is slightly discoloured but shows little or no change of strength from fresh rock	SA
Note: If HA and	MA cannot be differentiated use DA (see below)	
Distinctly altered	Rock strength usually changed by alteration. The rock may be highly discoloured, usually by staining or bleaching. Porosity may be increased by leaching, or may be decreased due to precipitation of secondary minerals in pores.	DA

Degree of Fracturing

The following descriptive classification apply to the spacing of natural occurring fractures in the rock mass. It includes bedding plane partings, joints and other defects, but excludes drilling breaks. These terms are generally not required on investigation logs where fracture spacing is presented as a histogram, and where used are presented in an unabbreviated format.

Term	Description	
Fragmented	Fragments of <20 mm	
Highly Fractured	Core lengths of 20-40 mm with occasional fragments	
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections	
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm	
Unbroken	Core contains very few fractures	

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD %= $\frac{\text{cumulative length of 'sound' core sections} \ge 100 \text{ mm long}}{\text{total drilled length of section being assessed}}$

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

These terms may be used to describe the spacing of bedding partings in sedimentary rocks. Where used, these terms are generally presented in an unabbreviated format

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Defect Descriptions

Defect Type

Term	Abbreviation Code	
Bedding plane	В	
Clay seam	CS	
Cleavage	CV	
Crushed zone	CZ	
Decomposed seam	DS	
Fault	F	
Joint	J	
Lamination	LAM	
Parting	PT	
Sheared zone	SZ	
Vein	VN	
Drilling/handling	DB , HB	
break		
Fracture	FCT	

Rock Defect Orientation

Term	Abbreviation Code
Horizontal	Н
Vertical	V
Sub-horizontal	SH
Sub-vertical	SV

Rock Defect Coating

Term	Abbreviation Code
Clean	CLN
Coating	CO
Healed	HE
Infilled	INF
Stained	STN
Tight	TI
Veneer	VEN

Rock Defect Infill

Term	Abbreviation Code
Calcite	CA
Carbonaceous	CBS
Clay	CLY
Iron oxide	FE
Manganese	MN
Silty	SLT

intentionally blank

Rock Defect Shape/Planarity

Term	Abbreviation Code
Curved	CU
Irregular	IR
Planar	PL
Stepped	ST
Undulating	UN

Rock Defect Roughness

Term	Abbreviation Code
Polished	PO
Rough	RO
Slickensided	SL
Smooth	SM
Very rough	VR

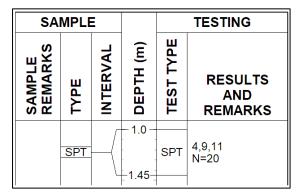
Other Rock Defect Attributes

Term	Abbreviation Code
Fragmented	FG
Band	BND
Quartz	QTZ

Defect Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

intentionally blank


Terminology Symbols Abbreviations

August 2020

Sampling and Testing

A record of samples retained and field testing performed is usually shown on a Douglas Partners' log with samples appearing to the left of a depth scale, and selected field and laboratory testing (including results, where relevant) appearing to the right of the scale, as illustrated below:

Sampling

The type or intended purpose for which a sample was taken is indicated by the following abbreviation codes.

Sample Type	Code
Auger sample	Α
Acid sulfate sample	ASS
Bulk sample	В
Core sample	С
Disturbed sample	D
Sample from SPT test	SPT
Environmental sample	E
Gas sample	G
Jar sample	J
Undisturbed tube sample	U ¹
Water sample	W
Piston sample	P
Core sample for unconfined	UCS
compressive strength testing	

¹ – numeric suffixes indicate tube diameter/width in mm

The above codes only indicate that a sample was retained, and not that testing was scheduled or performed.

Field and Laboratory Testing

A record that field and laboratory testing was performed is indicated by the following abbreviation codes.

Test Type	Code
Pocket penetrometer (kpa)	PP
Photo ionisation detector	PID
Standard Penetration Test	SPT
Shear vane (kpa)	V
Unconfined compressive	UCS
strength, (MPa)	
Point load test, axial (A),	PLT(_)
diametric (D), irregular (I)	

Field and laboratory testing (continued)

Test Type	Code
Dynamic cone penetrometer,	DCP/150
followed by blow count	
penetration increment in mm	
(cone tip, generally in accordance	
with AS1289.6.3.2)	
Perth sand penetrometer, followed	PSP/150
by blow count penetration	
increment in mm	
(flat tip, generally in accordance	
with AS1289.6.3.3)	

Groundwater Observations

\triangleright	seepage/inflow standing or obs		er lev	el
NFGWO	no free ground	water obse	rved	
OBS	Observations fluids	obscured	by	drilling

Drilling or Excavation Methods/Tools

The drilling/excavation methods used to perform the investigation may be shown either in a dedicated column down the left hand edge of the log, or stated in the log footer. In some circumstances abbreviation codes may be used.

Method	Abbreviation Code
Excavator/backhoe bucket	B ¹
Toothed bucket	TB ¹
Mud/blade bucket	MB ¹
Ripping tyne/ripper	RT
Rock breaker/hydraulic hammer	RB
Hand auger	HA ¹
NMLC series coring	NMLC
HMLC series coring	HMLC
NQ coring	NQ
HQ coring	HQ
PQ coring	PQ
Push tube	PT 1
Rock roller	RR ¹
Solid flight auger. Suffixes (TC)	SFA ¹
and (V) indicate tungsten	
carbide or v-shaped tip	
respectively	
Sonic drilling	SON ¹
Vibrocore	VC ¹
Wash bore (unspecified bit type)	WB ¹
Existing exposure	X
Hand tools (unspecified)	HT
Predrilled	PD
Specialised bit (refer report)	SPEC ¹
Diatube	DT ¹
Hollow flight auger	HFA1
Vacuum excavation	VE

 1 - numeric suffixes indicate tool diameter/width in mm

Introduction

The Cone Penetration Test (CPT) is a sophisticated soil profiling test carried out in-situ. A special cone shaped probe is used which is connected to a digital data acquisition system. The cone and adjoining sleeve section contain a series of strain gauges and other transducers which continuously monitor and record various soil parameters as the cone penetrates the soils.

The soil parameters measured depend on the type of cone being used, however they always include the following basic measurements

qc

fs

z

- Cone tip resistance
- Sleeve friction
- Inclination (from vertical) i
- Depth below ground

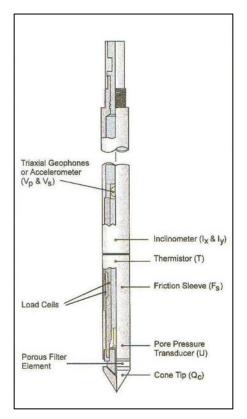


Figure 1: Cone Diagram

The inclinometer in the cone enables the verticality of the test to be confirmed and, if required, the vertical depth can be corrected.

The cone is thrust into the ground at a steady rate of about 20 mm/sec, usually using the hydraulic rams of a purpose built CPT rig, or a drilling rig. The testing is carried out in accordance with the Australian Standard AS1289 Test 6.5.1.

Figure 2: Purpose built CPT rig

The CPT can penetrate most soil types and is particularly suited to alluvial soils, being able to detect fine layering and strength variations. With sufficient thrust the cone can often penetrate a short distance into weathered rock. The cone will usually reach refusal in coarse filling, medium to coarse gravel and on very low strength or better rock. Tests have been successfully completed to more than 60 m.

Types of CPTs

Douglas Partners (and its subsidiary GroundTest) owns and operates the following types of CPT cones:

Туре	Measures							
Standard	Basic parameters (qc, fs, i & z)							
Piezocone	Dynamic pore pressure (u) plus basic parameters. Dissipation tests estimate consolidation parameters							
Conductivity	Bulk soil electrical conductivity () plus basic parameters							
Seismic	Shear wave velocity (Vs), compression wave velocity (Vp), plus basic parameters							

Strata Interpretation

The CPT parameters can be used to infer the Soil Behaviour Type (SBT), based on normalised values of cone resistance (Qt) and friction ratio (Fr). These are used in conjunction with soil classification charts, such as the one below (after Robertson 1990)

August 2020

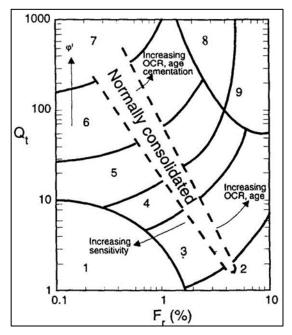


Figure 3: Soil Classification Chart

DP's in-house CPT software provides computer aided interpretation of soil strata, generating soil descriptions and strengths for each layer. The software can also produce plots of estimated soil parameters, including modulus, friction angle, relative density, shear strength and over consolidation ratio.

DP's CPT software helps our engineers quickly evaluate the critical soil layers and then focus on developing practical solutions for the client's project.

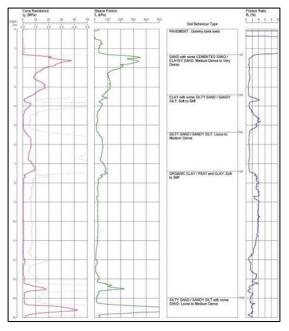
Engineering Applications

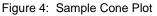
There are many uses for CPT data. The main applications are briefly introduced below:

Settlement

CPT provides a continuous profile of soil type and strength, providing an excellent basis for settlement analysis. Soil compressibility can be estimated from cone derived moduli, or known consolidation parameters for the critical layers (eg. from laboratory testing). Further, if pore pressure dissipation tests are undertaken using a piezocone, in-situ consolidation coefficients can be estimated to aid analysis.

Pile Capacity

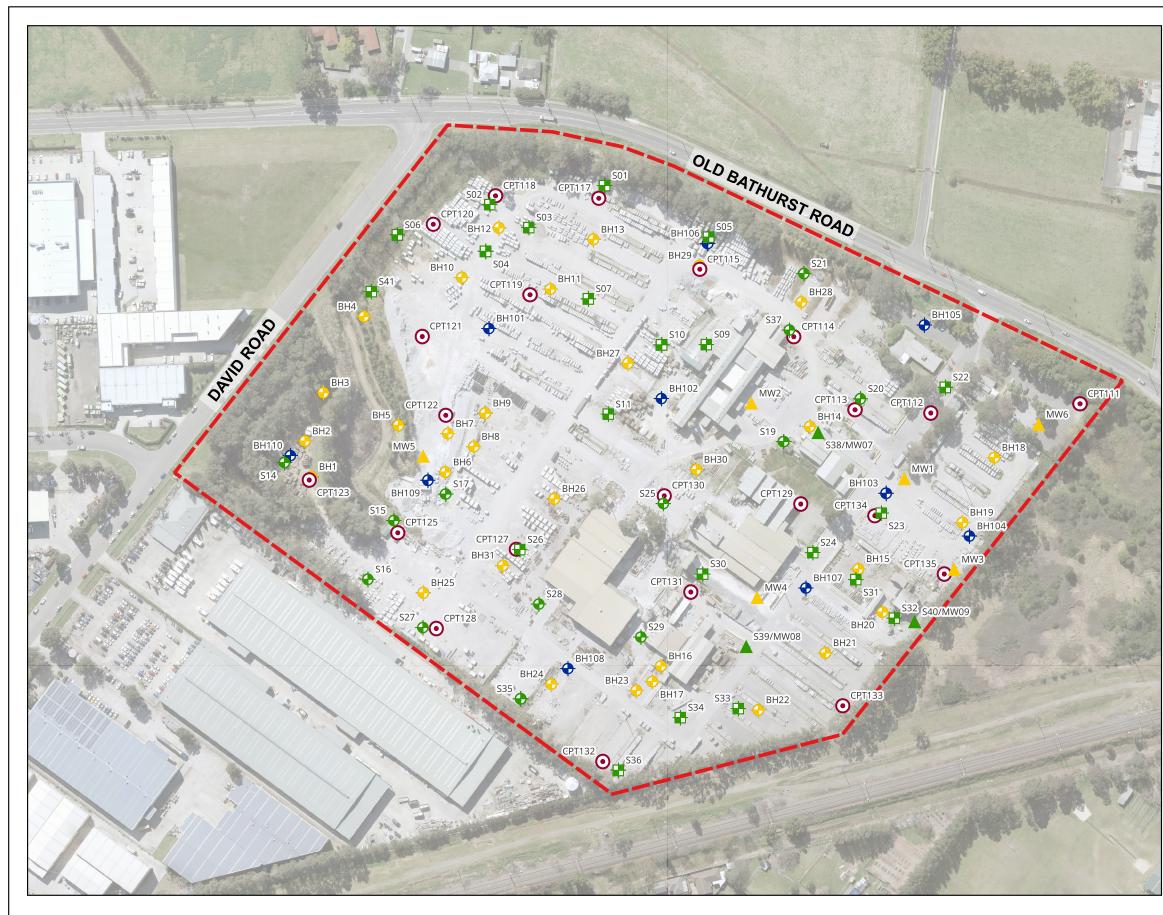

The cone is, in effect, a small scale pile and, therefore, ideal for direct estimation of pile capacity. DP's in-house program ConePile can analyse most pile types and produces pile capacity versus depth plots. The analysis methods are based on proven static theory and empirical studies, taking account of scale effects, pile materials and method of installation. The results are expressed in limit state format, consistent with the Piling Code AS2159.


Dynamic or Earthquake Analysis

CPT and, in particular, Seismic CPT are suitable for dynamic foundation studies and earthquake response analyses, by profiling the low strain shear modulus G0. Techniques have also been developed relating CPT results to the risk of soil liquefaction.

Other Applications

Other applications of CPT include ground improvement monitoring (testing before and after works), salinity and contaminant plume mapping (conductivity cone), preloading studies and verification of strength gain.



Appendix B

Drawings

NOTE: 1:Basemap from MetroMap (Dated 29.08.2020) 0 20 40 60 80 100 120 140 160 180 200 m

1:2500 @A3

CLIENT: Penrith City Council						
OFFICE: Sydney	E: Sydney		DRAWN BY: AH			
SCALE: 1:2500	@ A3	DATE:	11.10.2023			

TITLE: Site and Test Location Plan Rocla Site - Proposed Development 158-164 Old Bathurst Road, Emu Plains



Locality Plan

LEGEND Approximate Site Boundary \odot CPT Location (DP 2021) • Borehole Location (DP 2021) -Test Pit Location (JBS&G 2021) • Borehole Location (JBS&G 2021) Monitoring Well (JBS&G 2021) 0 Borehole Location (Ramboll, 2020) Monitoring Well (Ramboll, 2020)

PROJECT No: 200309.02 DRAWING No: 1 REVISION: 0

NOTE: 1:Basemap from MetroMap (Dated 29.08.2020)

0 20 40 60 80 100 120 140 160 180 200 m

1:2500 @A3

CLIENT: Penrith City Council					
OFFICE: Sydney		DRAWN BY: AH			
		DATE:	11.10.2023		

TITLE:Depth of Existing Fill Location PlanRocla Site - Proposed Development158-164 Old Bathurst Road, Emu Plains

Locality Plan

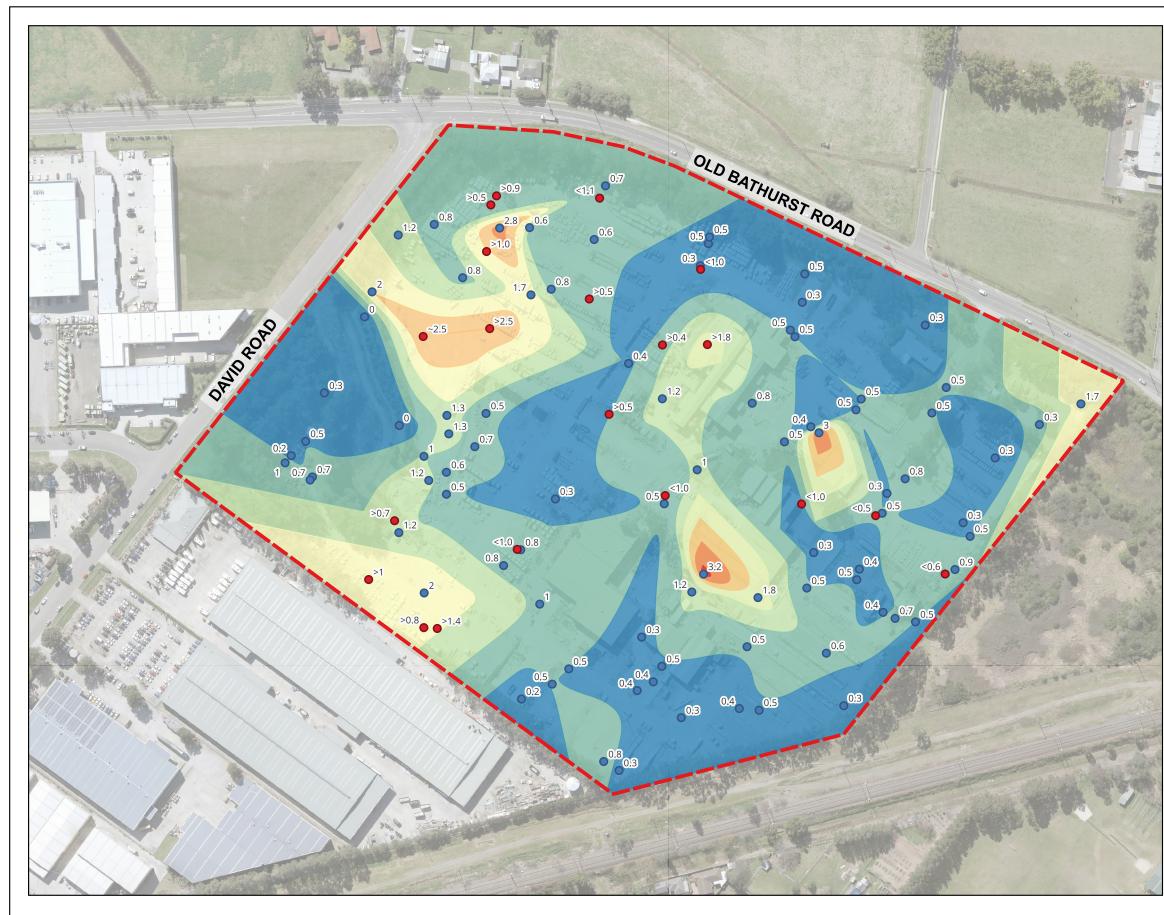
LEGEND

 $oldsymbol{\circ}$

 \bullet

Approximate Site Boundary

- Fill Depth Based on Borehole/Test Pit Log
- Fill Depth Not Well Defined


PROJECT No: 200309.02

DRAWING No:

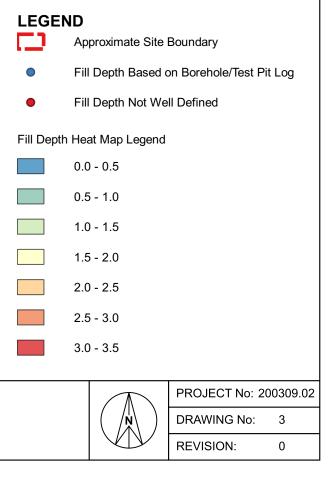
2

REVISION:

0

NOTE: 1:Basemap from MetroMap (Dated 29.08.2020) 0 20 40 60 80 100 120 140 160 180 200 m

1:2500 @A3



CLIENT: Penrith City Council						
OFFICE: Sydney	E: Sydney		DRAWN BY: AH			
SCALE: 1:2500	@ A3	DATE:	11.10.2023			

TITLE: Interpreted Existing Fill Depth Heat MapRocla Site - Proposed Development158-164 Old Bathurst Road, Emu Plains

Locality Plan

Appendix C

Results of Field Work

SURFACE LEVEL: 24.2 mAHD **EASTING:** 283615.8 **NORTHING:** 6263796.7 **DIP/AZIMUTH:** 90°/-- BORE No: 101 PROJECT No: 200309.00 DATE: 14/1/2021 SHEET 1 OF 1

De	mth	Description	, pic		Sam		& In Situ Testing		Dynamic Penetrometer Test
שר Del מין Del	pth n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blows per 0mm) 5 10 15 20
24		FILL/ROADBASE: 20-40mm, medium to coarse grained, crushed igneous rock, grey, dry (possibly stabilised with cement)		A B A	0.0 0.2 0.4 0.5	0,	B:0-0.8m		
- 1	0.8 -	FILL/Sandy GRAVEL GW: fine to medium gravel, grey and pale grey, medium to coarse grained sand, damp (possibly roadbase) - trace concrete fragments from 1.0m		S	0.8 1.0 1.38 1.45		11,15,20/80 refusal		-1
- 2	1.5 -	FILL /Gravelly SAND SP: grey and pale grey, medium to coarse grained, damp (roadbase)		S	1.5 2.0		15,13,15 N = 28		-2
	2.45 -	Bore discontinued at 2.45m			-2.45-				-3
- 4 - 02									-4
-									

RIG: MCT200DRILLER: TerratestLOGGED: JYTYPE OF BORING:200mm diameter auger to 0.8m then 110mm spiral flight auger

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

CLIENT:

PROJECT:

LOCATION:

JBS&G Australia Pty Ltd

Rocla Site - Proposed Development

158-164 Old Bathurst Road, Emu Plains

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL
 Pioint load axial test is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (xmm dia.)
 PL(A) Point load diametral test is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3

SURFACE LEVEL: 24.3 mAHD **EASTING:** 283730 **NORTHING:** 6263750.3 **DIP/AZIMUTH:** 90°/-- BORE No: 102 PROJECT No: 200309.00 DATE: 14/1/2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Well Description Water Depth Log Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata FILL/ROADBASE: 20-40mm, medium to coarse grained, crushed igneous rock, grey, dry (possibly stabilised with 0.2 cement) FILL/Sandy GRAVEL GW: medium to coarse grained, orange-brown, grey, dry 0.5 FILL/Sandy CLAY CL: low plasticity, pale grey and brown, with silt, trace gravel, w<PL 1.0 • 1 1 4,5,7 1.2 S Silty CLAY CL: low plasticity, orange-brown mottled pale N = 12grey, w<PL, stiff, alluvial 1.45 В B·1-2 0m - 2 2.0 -2 - becoming very stiff from 2.0m 7,8,8 N = 16 s 2.45 2.45 Bore discontinued at 2.45m - 3 - 3 -4 - 4 .0

RIG: MCT200

CLIENT:

PROJECT:

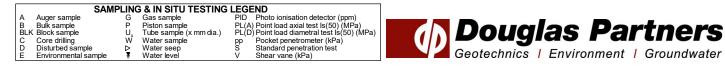
LOCATION:

JBS&G Australia Pty Ltd

Rocla Site - Proposed Development

158-164 Old Bathurst Road, Emu Plains

DRILLER: Terratest


LOGGED: JY

CASING: Uncased

 TYPE OF BORING:
 200mm diameter auger to 1.2m then 110mm spiral flight auger

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:
 No free groundwater observed

SURFACE LEVEL: 24.3 mAHD BORE No: 103 EASTING: 283878.6 **NORTHING:** 6263687.7 DIP/AZIMUTH: 90°/--

PROJECT No: 200309.00 DATE: 14/1/2021 SHEET 1 OF 1

							-: 90°/		SHEET 1 OF 1
	Dauth	Description	Jic D		Sam		& In Situ Testing	5	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
24	0.3 -	FILL/ROADBASE: 20-40mm, medium to coarse grained, crushed igneous rock, grey, dry (possibly stabilised with cement)		A	0.0 0.2 0.3				-
		Clayey SAND SC: fine to medium grained, orange-brown, with some cemented layers, dry, dense, alluvial			0.4 0.5				-
				В			B:0.3-1.0m		-
	- 1			s	1.0		16,15,12/100B refusal		-1
				<u> </u>	1.42 1.45 1.5				-
	-2			s	2.0		15,16,15 N = 31		-2
22	2.45 -	Bore discontinued at 2.45m			-2.45-		N = 31		- -
									-
	-3								-3
21									-
									-
	- 4								4
 50									

RIG: MCT200

CLIENT:

PROJECT:

JBS&G Australia Pty Ltd

LOCATION: 158-164 Old Bathurst Road, Emu Plains

Rocla Site - Proposed Development

DRILLER: Terratest

LOGGED: JY

CASING: Uncased

TYPE OF BORING: 200mm diameter auger to 1.5m then 110mm spiral auger WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

	SA	MPLING	& IN SITU TESTING	G LEGE	ND		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)		
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa))	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	e 📱	Water level	V	Shear vane (kPa)		

SURFACE LEVEL: 24.7 mAHD EASTING: 283933.6 NORTHING: 6263659.3 DIP/AZIMUTH: 90°/--

BORE No: 104 PROJECT No: 200309.00 DATE: 14/1/2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Description Dynamic Penetrometer Test Water Depth Log 뭅 Sample of Depth (blows per 150mm) Results & Comments (m) Type Strata 20 15 0.0 FILL/ROADBASE: 20-40mm, medium to coarse grained, А crushed igneous rock, grey, dry (possibly stabilised with 0.2 cement) 0.2 FILL/SAND SP: medium grained, grey and orange-brown, with gravel, grey, dry 0.4 А 0.5 0.5 Silty SAND SM: fine to medium grained, orange-brown, with clay, grey, dry, medium dense, alluvial $\cdot |\cdot| \cdot |$ • | • | • | 0.9 $\cdot |\cdot|\cdot|$ А 1.0 1 1 $\cdot |\cdot| \cdot |$ $\cdot |\cdot| \cdot |$ 7,13,13 S $\cdot |\cdot|\cdot|$ N = 26• | • | • | 1.45 1.5 $\cdot |\cdot|\cdot|$ A • | • | • | 3. • | • | • | 1.9 $\cdot |\cdot| \cdot |$ А - 2 2.0 -2 $\cdot |\cdot| \cdot |$ $\cdot |\cdot| \cdot |$ 10.8.10 S N = 18 $\cdot |\cdot| \cdot |$ $\cdot |\cdot|\cdot|$ 2.45 -2.45 Bore discontinued at 2.45m 5. 3 - 3 •4 - 4 RIG: MCT200 **DRILLER:** Terratest LOGGED: JY CASING: Uncased TYPE OF BORING: 110mm diameter SFA WATER OBSERVATIONS: No free groundwater observed

REMARKS:

A Auger sample B Bulk sample BLK Block sample

CDE

CLIENT:

PROJECT:

LOCATION:

JBS&G Australia Pty Ltd

Rocla Site - Proposed Development

158-164 Old Bathurst Road, Emu Plains

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U,x W Core drilling Disturbed sample Environmental sample

₽

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3

SURFACE LEVEL: 24.7 mAHD EASTING: 283903.9 NORTHING: 6263799 DIP/AZIMUTH: 90°/--

BORE No: 105 PROJECT No: 200309.00 DATE: 14/1/2021 SHEET 1 OF 1

Sampling & In Situ Testing Well Description Graphic Log Water Depth Ъ of Sample Construction Depth Type Results & Comments (m) Strata Details 0.04 ASPHALTIC CONCRETE 0.1 0.1 FILL/ROADBASE: 20-40mm, medium to coarse grained, А 0.2 crushed igneous rock, grey, dry (possibly stabilised with 0.3 cement) 0.3 FILL/Gravelly SAND SW: brown, igneous gravel, grey, dry/ 0.4 А 0.5 Silty CLAY CL: low plasticity, orange-brown, trace sand, w<PL, alluvial 0.8 SAND: fine to medium grained, orange-brown, medium в B:0.3-1.5m dense, alluvial 1.0 • 1 1 6,8,10 N = 18 S 1.45 1.5 A <u>ෆ</u> -2 - 2 2.0 11.10.11 S N = 21 2.45 2.45 Bore discontinued at 2.45m 5. 3 - 3 -4 - 4 RIG: MCT200 **DRILLER:** Terratest

TYPE OF BORING: 110mm diameter SFA

CLIENT:

PROJECT:

LOCATION:

JBS&G Australia Pty Ltd

Rocla Site - Proposed Development

158-164 Old Bathurst Road, Emu Plains

LOGGED: JY

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

	SAMP	LINC	3 & IN SITU TESTING	LEGE	IND	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	١.
	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)) Point load diametral test ls(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

SURFACE LEVEL: 24.5 mAHD EASTING: 283760.5 NORTHING: 6263852.9 DIP/AZIMUTH: 90°/--

BORE No: 106 PROJECT No: 200309.00 DATE: 14/1/2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Well Description Water Depth Log 뭅 Sample Construction of Depth Results & Comments (m) Type Details Strata 0.0 FILL/ROADBASE: 20-40mm, medium to coarse grained, А crushed igneous rock, grey, dry (possibly stabilised with 0.2 cement) 0.2 FILL/Sandy CLAY CL: low plasticity, brown, trace gravel, w<PL 0.4 А 0.5 0.5 Sandy CLAY CL: low plasticity, pale brown mottled orange-brown, w<PL, very stiff, alluvial 0.9 А 1.0 • 1 1 11,13,12 S N = 251.45 1.9 А - 2 20 2.0 -2 SAND SW: fine to medium grained, orange-brown, grey, dry, medium dense, alluvial 8,13,6 N = 19 S 2.45 2.45 5. Bore discontinued at 2.45m 3 - 3 •4 - 4 RIG: MCT200 **DRILLER:** Terratest LOGGED: JY CASING: Uncased

TYPE OF BORING: 110mm diameter SFA WATER OBSERVATIONS: No free groundwater observed

₽

REMARKS:

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

CLIENT:

PROJECT:

LOCATION:

JBS&G Australia Pty Ltd

Rocla Site - Proposed Development

158-164 Old Bathurst Road, Emu Plains

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample Water sample Water seep Water level G P U_x W

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

SURFACE LEVEL: 24.2 mAHD **EASTING:** 283825.6 **NORTHING:** 6263625.1 **DIP/AZIMUTH:** 90°/-- BORE No: 107 PROJECT No: 200309.00 DATE: 14/1/2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Well Description Water Depth Ъ Construction of Sample Depth Type Results & Comments (m) Strata Details 0.04 ASPHALTIC CONCRETE FILL/ROADBASE: 20-40mm, medium to coarse grained, crushed igneous rock, grey, dry (possibly stabilised with 0.3 cement) FILL/Clayey SAND SC: fine to medium grained, orange-brown, trace gravel, grey, dry 0.5 0.5 Sandy CLAY CL: low plasticity, orange-brown, w<PL, stiff, alluvial 1.0 B:0.5-1.5m в • 1 1 4,5,6 N = 11 3. s 1.45 1.5 1.5 Clayey SAND SC: fine to medium grained, orange-brown, damp, loose, alluvial (1._{1.1.}) -2 - 2 2.0 ·/., /./., 1._{1.,} 3,3,3 N = 6 2. S 2.45 -2.45 Bore discontinued at 2.45m - 3 - 3 5 -4 - 4 -2

RIG: MCT200

DRILLER: Terratest

LOGGED: JY

CASING: Uncased

 TYPE OF BORING:
 200mm diameter auger to 1.5m then 110mm diameter auger

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:
 Image: Comparison of the second secon

JBS&G Australia Pty Ltd

Rocla Site - Proposed Development

158-164 Old Bathurst Road, Emu Plains

CLIENT: PROJECT:

LOCATION:

	SAM	IPLING	3 & IN SITU TESTING	LEG	END				
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		-	
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)				Doutrooko
BLI	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	11.			Parmers
C	Core drilling	Ŵ	Water sample	`qq	Pocket penetrometer (kPa)		Dudg	140	Partners
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11			
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	I Envir	ronment Groundwater

SURFACE LEVEL: 24.1 mAHD **EASTING:** 283668.1 **NORTHING:** 6263571.7 **DIP/AZIMUTH:** 90°/-- BORE No: 108 PROJECT No: 200309.00 DATE: 14/1/2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Well Description Water Depth Sample Ъ Construction of Depth Type Results & Comments (m) Strata Details FILL/ROADBASE: 20-40mm, medium to coarse grained, -2crushed igneous rock, grey, dry (possibly stabilised with cement) 0.25 FILL/Clayey SAND SC: fine to medium grained, brown, grey, dry 0.5 0.5 Silty CLAY CH: medium plasticity, orange-brown, w<PL, stiff, alluvial 1.0 B:0.5-1.5m в • 1 1 33-7,8,7 N = 15 s 1.45 1.5 1.5 Clayey SAND SC: fine to medium grained, orange-brown,damp, loose to medium dense, alluvial (1._{1.1.)} 2.0 - 2 -2 3 '., ., 6,5,5 N = 10 S 2.45 -2.45 Bore discontinued at 2.45m - 3 - 3 -2--4 - 4 -2

RIG: MCT200

DRILLER: Terratest

LOGGED: JY

CASING: Uncased

 TYPE OF BORING:
 200mm diameter auger to 1.5m then 110mm diameter auger

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:
 Image: Construction of the second sec

JBS&G Australia Pty Ltd

Rocla Site - Proposed Development

158-164 Old Bathurst Road, Emu Plains

CLIENT: PROJECT:

LOCATION:

	SAMPL	ING	3 & IN SITU TESTING	LEGE	END						
A Aug	ger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				-	_	_
B Bulk	k sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)						
BLK Bloc	ck sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)						rtner s
C Cor	re drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)				140		
D Dist	turbed sample	⊳	Water seep	S	Standard penetration test		^				
E Env	/ironmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geote	cnnics	I Enviro	onment	I Groundwate.
						-					

SURFACE LEVEL: 24.4 mAHD **EASTING:** 283575.5 **NORTHING:** 6263696.3 **DIP/AZIMUTH:** 90°/--

BORE No: 109 PROJECT No: 200309.00 DATE: 14/1/2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Description Dynamic Penetrometer Test Water Depth Sample 뭅 of Depth (blows per 0mm) Results & Comments (m) Type Strata 10 15 20 0.0 FILL/ROADBASE: 20-40mm, medium to coarse grained, А crushed igneous rock, grey, dry (possibly stabilised with cement) 0.2 В 0.4 B:0-0.8m A 0.5 - becoming damp, trace sandstone gravel from 0.5m 0.8 0.8 FILL/Gravelly SAND SP: dark grey and brown, with 0.9 sandstone gravel, moist А 1.0 1 1 2,2,4 1.2 s Silty CLAY CH: medium plasticity, orange-brown, w<PL, N = 6firm, alluvial 1.45 1.5 A - 2 2.0 -2 2,3,4 N = 7 s 2.45 2.45 Bore discontinued at 2.45m . 3 - 3 -4 - 4

 RIG:
 MCT200
 DRILLER:
 Terratest
 LOGGED:
 JY

 TYPE OF BORING:
 200mm diameter auger to 0.8m then 110mm spiral flight auger

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS:

CLIENT:

PROJECT:

LOCATION:

JBS&G Australia Pty Ltd

Rocla Site - Proposed Development

158-164 Old Bathurst Road, Emu Plains

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 Ux
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 F
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 F
 Water level
 V
 Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3

SURFACE LEVEL: 24.3 mAHD EASTING: 283484.5 NORTHING: 6263712.7 DIP/AZIMUTH: 90°/--

BORE No: 110 PROJECT No: 200309.00 DATE: 14/1/2021 SHEET 1 OF 1

Sampling & In Situ Testing Well Description Graphic Water Depth Log Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata FILL/TOPSOIL: Silty CLAY: brown, with vegetation 0.1 0.1 throughout, w<PL А 0.2 0.2 FILL/Silty CLAY CL: low plasticity, grey and brown, trace ∖gravel, ẃ<PL Clayey SAND SC: fine to medium grained, orange-brown, 0.4 А w<PL, medium dense, alluvial 0.5 0.5 Silty CLAY CH: medium plasticity, grey, w<PL, stiff, alluvial 0.9 А 1.0 1.0 • 1 1 Silty CLAY CH: medium plasticity, orange-brown, w<PL, stiff, alluvial 4,5,6 s N = 111.45 1.5 A -2 2.0 -2 4,5,6 N = 11 s 2.45 2.45 Bore discontinued at 2.45m - 3 -3 -4 - 4 .<u>o</u> RIG: MCT200 **DRILLER:** Terratest LOGGED: JY CASING: Uncased

TYPE OF BORING: 110mm diameter SFA WATER OBSERVATIONS: No free groundwater observed

₽

REMARKS:

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

CLIENT:

PROJECT:

LOCATION:

JBS&G Australia Pty Ltd

Rocla Site - Proposed Development

158-164 Old Bathurst Road, Emu Plains

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample Water sample Water seep Water level G P U,x W

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 23.8m AHD

COORDINATES: 284006.9E 6263746.9N

CPT111 Page 1 of 1 DATE 14/01/2021 PROJECT No: 200309.00

		Cone Resis q _c (MPa)	stance					Sleeve Fi f _s (kPa)	riction							Frict R _f (9	tion R %)	₹atio		
Depth (m)	(0 10	20) 3	80 4 	0 5 1 .0 5	50 	0 10	0 20	00 3	00 ·	400 I	500	Soil Behaviour Type			. 4	6	8 10) Depth (m) Γ ⁰
0.	0.	0 1.0	2.0) 3	.0 4	.0 5	.0							FILL: Gravelly SAND			2			
1.								5								$\langle \mathbf{v} \rangle$	-			- 1
1.		End at 1.06r	n q _c =	5.8											1.06					
2 -							-													- 2
3 -							-						_					_		- 3
4 -							-													- 4
5							-						_					_		- 5
6-	-						-													- 6
7 -							-													- 7
8 -							-						-					+	+	- 8
9.																				- 9
10 -							J				1									L ₁₀

REMARKS: TEST DISCONTINUED DUE TO SUDDEN BEND IN FILLING. NO GROUNDWATER OBSERVED AFTER WITHDRAWAL OF RODS.

 File:
 P:\200309.00
 EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT111.CP5

 Cone ID:
 160626
 Type:
 I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 23.8m AHD

COORDINATES: 284006.9E 6263746.9N

CPT111A Page 1 of 1 DATE 14/01/2021 PROJECT No: 200309.00

		Cone R q _c (MPa	esistar a)	ice				Sleeve f _s (kPa)	Friction							Fric R _f (tion F %)	Ratio	8		
Depth (m)	0 L T) 0	10 1 1.0	20 2.0	30 	40 	50 1 5.0	0 1	00 2	00 3	00 4	00 5 I	00	Soil Behaviour Type		0	24	6	8	10	Dept (m) Γ ⁰
0	0.	0 ·	1.0	2.0	3.0	4.0	5.0						1	FILL: Gravelly SAND	٦	5					[⁰
				-			_		~							R					
		End at 0).54m q	c = 70.1	_										0.54	~		_	_		_
				Č																	
1 -																			+	_	- 1
2 -				_												-			+	_	- 2
3 -																-			+	_	- 3
4 -																			—	_	- 4
5 -																			_	_	- 5
6 -																			_		- 6
7 -																			\perp		- 7
8 -																			\perp		- 8
9 -																					- 9
5																					ľ
10 -																					L 10

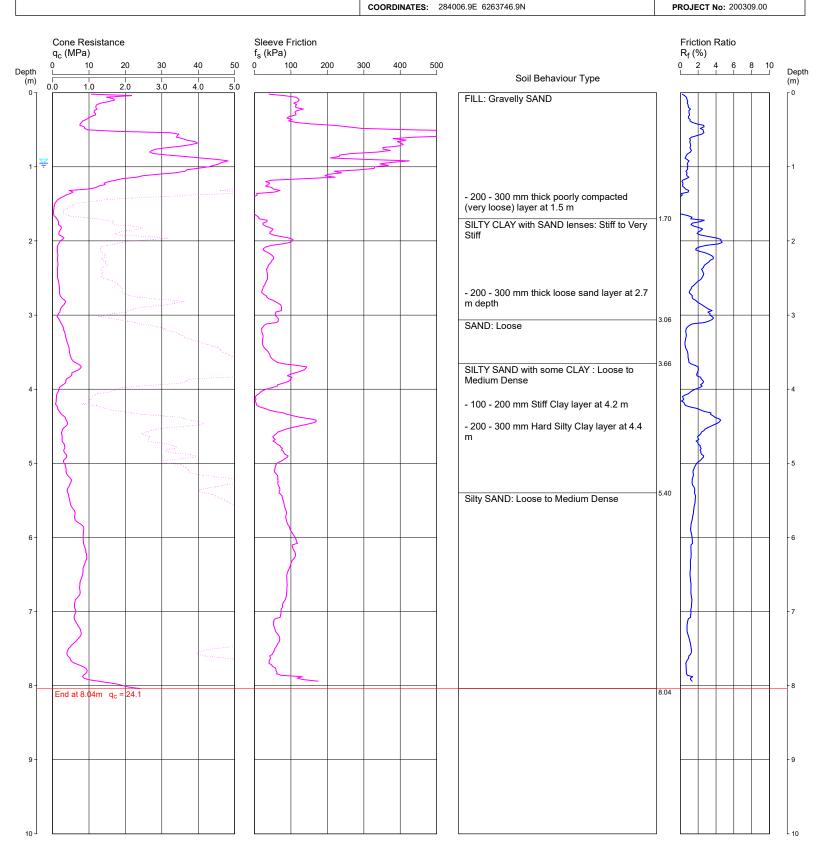
REMARKS: TEST DISCONTINUED DUE TO SUDDEN BEND IN FILLING. NO GROUNDWATER OBSERVED AFTER WITHDRAWAL OF RODS.

 File:
 P:\200309.00
 EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT111A.CP5

 Cone ID:
 160626
 Type:
 I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT


LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 23.8m AHD

CPT111B Page 1 of 1

 DATE
 14/01/2021

 PROJECT No:
 200309.00

REMARKS: TEST DISCONTINUED DUE TO BENDING IN GRAVEL. GROUNDWATER OBSERVED AT 0.95m AFTER WITHDRAWAL OF RODS.

Water depth after test: 0.95m depth (assumed)

File: \\dpnwsnas01\Projects\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT111B.CP5
Cone ID: 160626
Type: I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 24.2m AHD

COORDINATES: 283908.3E 6263740.9N

Denth		Cone R q _c (MPa	esistance a) 10 20	3	0 4	0 5	i0 (Sleeve F f _s (kPa)	riction	00 3	00 4	00 5	00			Fric R _f (tion F %) 2 4	Ratio	8 10) Dent
Depth (m)	0.	.0 1) 3.	0 4 	0 5 0 5	.0	I			1	1		Soil Behaviour Type						/ Dept (m) Γ ⁰
°]				\checkmark]	M	~]	FILL: Gravelly CLAY with trace sand		Z			\square	ſ
			5									5					\mathbb{R}			
												ſ					\square			
			$ \rangle$														\mathbb{N}			
1 -			$\left \right $														\mapsto	—		- 1
																_	4			
			5																	
-	_	End at 1	.62m q _c = 1	12.6								-			1.62	-	<u> </u>			
2-																				- 2
3 -																				- 3
4 -																				- 4
5 -																	\square			- 5
6-																				- 6
7 -																				- 7
8-		1			1		1										\square	-	\square	- 8
9-																			\square	- 9
10			1			1	1	L		1	1	1	1			<u>ـــــ</u>	┶──┶			L 10

REMARKS: TEST DISCONTINUED DUE TO EXCESSIVE CONE BENDING. NO GROUNDWATER OBSERVED AFTER WITHDRAWAL OF RODS.

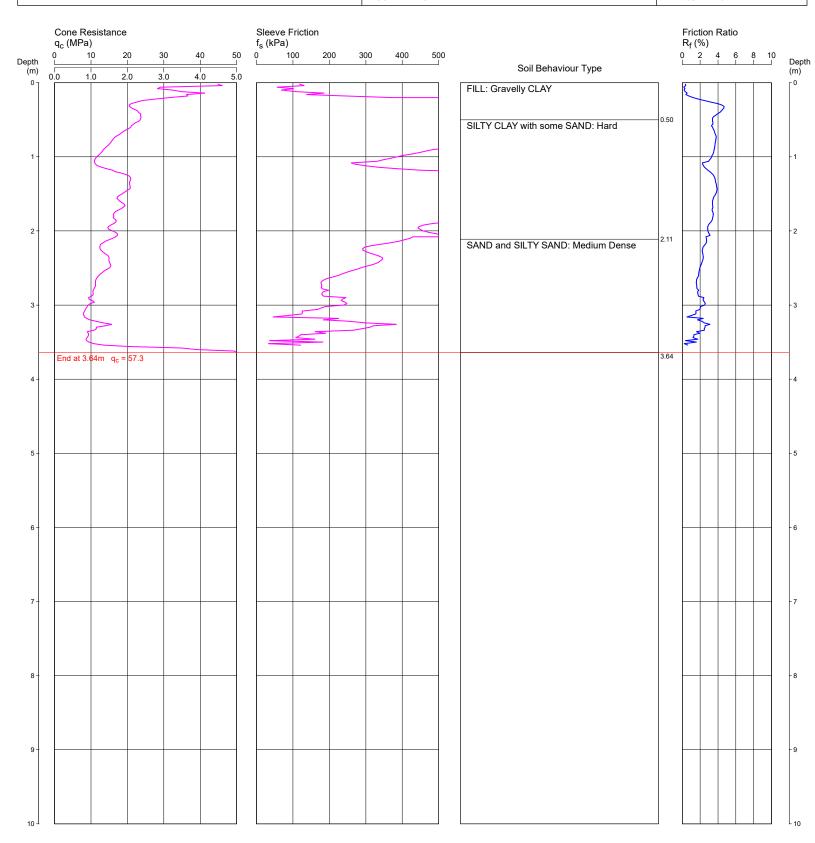
 File:
 P:\200309.00 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT112.CP5

 Cone ID:
 160626
 Type: I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS


CPT112A Page 1 of 1 DATE 14/01/20

COORDINATES: 283908.3E 6263740.9N

REDUCED LEVEL: 24.2m AHD

 DATE
 14/01/2021

 PROJECT No:
 200309.00

REMARKS: TEST DISCONTINUED DUE TO EXCESSIVE CONE BENDING IN GRAVEL. NO GROUNDWATER OBSERVED AFTER WITHDRAWAL OF RODS.

File: \\dpnwsnas01\Projects\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT112A.CP5
Cone ID: 160626
Type: I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 24.7m AHD

COORDINATES: 283858.1E 6263743.0N

	q _c (ne Resista (MPa)					Sleeve f _s (kPa)								Friction R _f (%)			
Depth (m)	0	10	20 	30	40	50	0 1	00 20	00 3	00 4	00 5	00	Soil Behaviour Type	() 2	4 6	8 10	Depth (m)
(iii) T ⁰	0.0	1.0	2.0	3.0	4.0	5.0		_				1	FILL: Gravelly SAND	1				(ш) Г ⁰
						>									2			
		\square			<					- 5				0.55		>		
		$\left\{ \right\}$				\geq		5					CLAY: Very Stiff to Hard with trace sand and gravel lenses		5			
1 -								<u>}</u>										- 1
		$\left \right\rangle$						5							(
		/						8							}			
	1 (/			C			1					- 300 - 400 mm thick silty sand layer from					
2 -)					5					-	1.7 m		4			- 2
				>>			1								7			
					2			K.							}			
		2			<			$ \geq$										
3 -		<u>} </u>						\mid										- 3
	`				****	New York	(T										
		2			ast17			≯						3.50	>			
		\mathbf{V}					\leq						GRAVELLY SAND: Medium Dense to Dense	0.00	Z			
4		<													~	•		4
1	End	d at 4.00m	q _c = 29.3											4.00				1
5 -																		- 5
6 -												-						- 6
7 -	\vdash			+								-				+	+	- 7
8 -	\vdash											-				+	+	- 8
9 -												-				+		- 9
10																		L 10

REMARKS: TEST DISCONTINUED DUE TO BENDING IN GRAVEL.

NO GROUNDWATER OBSERVED AFTER WITHDRAWAL OF RODS.

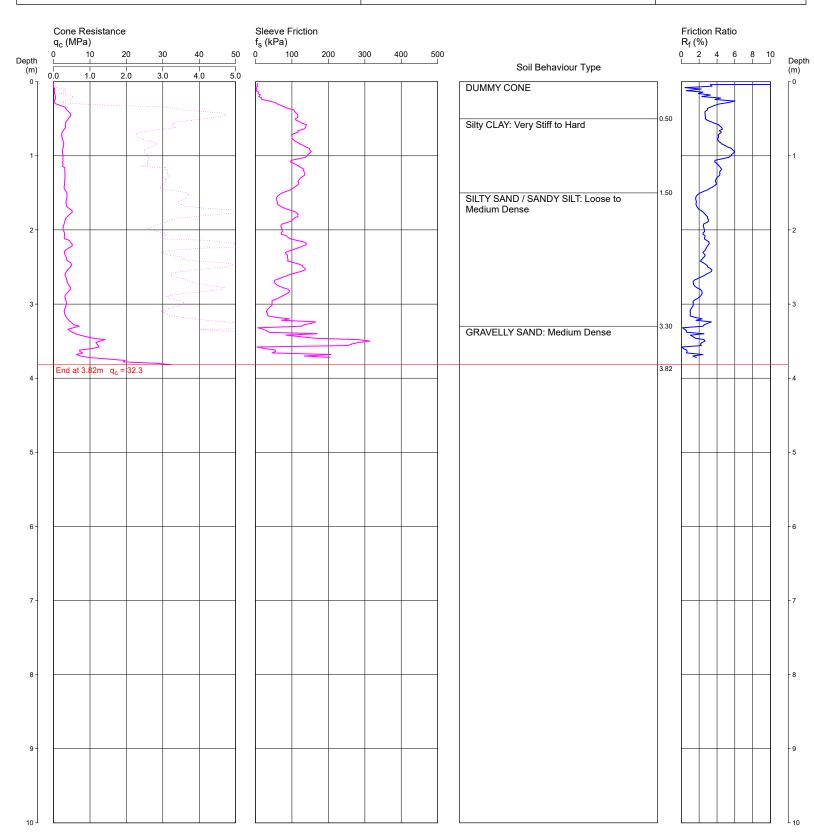
 File:
 P:\200309.00
 EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT113.CP5

 Cone ID:
 160626
 Type:
 I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS


CPT114 Page 1 of 1

REDUCED LEVEL: 24.5m AHD

COORDINATES: 283817.7E 6263791.3N

 DATE
 14/01/2021

 PROJECT No:
 200309.00

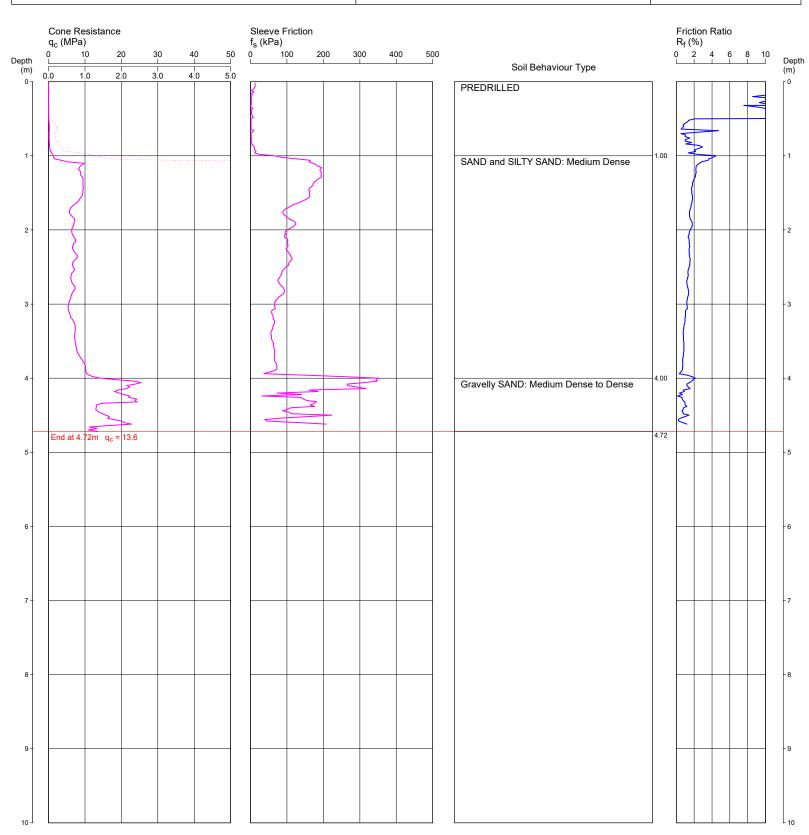
REMARKS: DUMMY CONE FROM 0.0 TO 0.5m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO SUDDEN BEND IN GRAVEL. HOLE COLLAPSED AT 3.5m AFTER WITHDRAWAL OF RODS.

 File:
 P:/200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT114.CP5

 Cone ID:
 160626
 Type: I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT


LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 24.5m AHD

COORDINATES: 283755.3E 6263835.9N

CPT115 Page 1 of 1 DATE 15/01/2021

PROJECT No: 200309.00

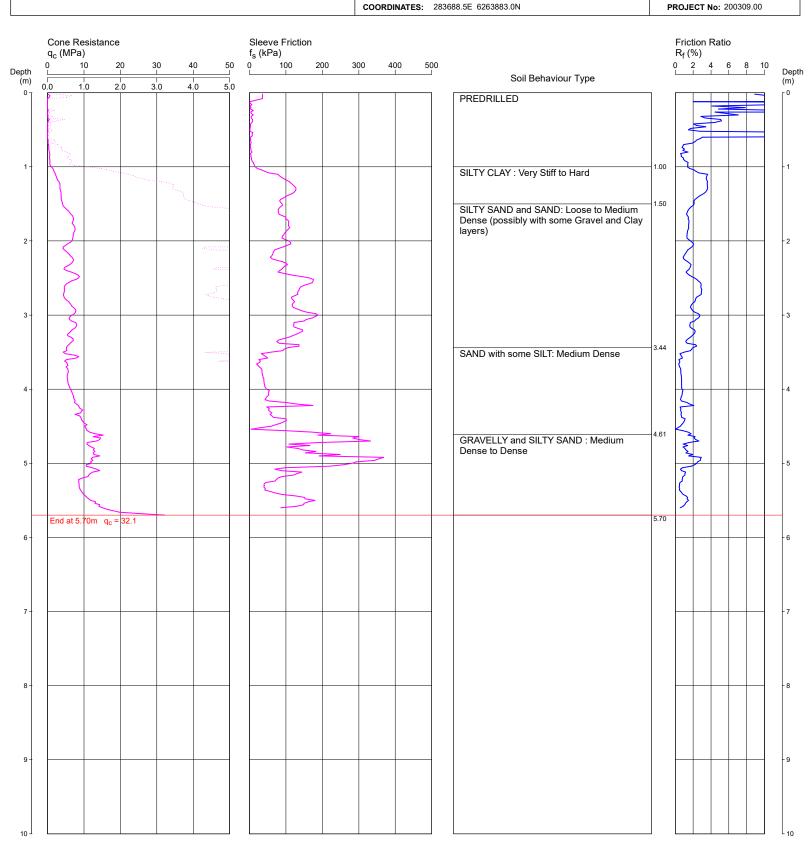
REMARKS: AUGER TO 1.0m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO BENDING IN GRAVEL. HOLE COLLAPSED AT 0.m AFTER WITHDRAWAL OF RODS.

 File:
 P:/200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT115.CP5

 Cone ID:
 161225
 Type: I-CFXY-10

Geotechnics | Environment | Groundwater

CLIENT: JBS&G AUSTRALIA PTY LTD


PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 24.8m AHD

CPT117 Page 1 of 1 DATE 15/01/2021

PROJECT No: 200309.00

REMARKS: AUGER TO 1.0m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO REFUSAL IN GRAVEL. HOLE COLLAPSED AT 0.8m AFTER WITHDRAWAL OF RODS.

File: P:\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT117.CP5 Cone ID: 161225 Type: I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 24.5m AHD

COORDINATES: 283620.3E 6263884.5N

CPT118 Page 1 of 1 DATE 14/01/2021

PROJECT No: 200309.00

		Cone F q _c (MP	Resista a)	nce					Sleev f _s (kP	e Fric a)	tion								Frict R _f (%	6)				
Depth (m)) 1	ò	10	20	30) 4	10 5	50 J 1 5.0	0	100	20	0	300	400 I	5	00	Soil Behaviour Type		0 2	4	6	8	10	Dept (m) [⁰
0.	1		1.0	2.0	3.	0 4	.0 5	.0]								1	FILL: Gravelly SAND]						0
		End at ().12m	q _c = 21.1	7													0.12						
1.	1																							- 1
2 -																								-2
2																								
3 -	-																					_		- 3
4 -	-							-		_										-			-	- 4
5 -	İ																							- 5
6 -	ļ															-								- 6
7 -	ł																			_		_	_	- 7
8 -	ĺ																							- 8
9-																								- 9
5																								
10 -																								L ₁₀

REMARKS: DUMMY CONE FROM 0.10 TO 0.15m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO REFUSAL IN FILLING. NO GROUNDWATER OBSERVED AFTER WITHDRAWAL OF RODS.

 File:
 P:\200309.00 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT118.CP5

 Cone ID:
 161225
 Type: I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

CPT118A Page 1 of 1 DATE 15/01/20

COORDINATES: 283620.3E 6263884.5N

REDUCED LEVEL: 24.5m AHD

DATE 15/01/2021
PROJECT No: 200309.00

	Cor q _c (ne Resist (MPa)	ance					Sleeve F f _s (kPa)	riction							Friction R _f (%)	Ratio		
Depth (m)	0	10	20	30			0 (0 10	0 2	00 3	300	400	500	Soil Behaviour Type	(4 6 8	3 10 	Depth (m)
	0.0	1.0	2.0	3.0) 4.	0 5.	.0	,						PREDRILLED		Mart			
1-	Enc	d at 0.86m	q _c = 0.7	,											0.86				- 1
3 -																			- 3
4 -																			- 4
5 -													_						- 5
6 -																			- 6
7 -													_						- 7
8 -													_						- 8
9-													_						- 9

REMARKS: AUGER TO 1.20m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO BENDING IN FILLING. HOLE COLLAPSED AT 0.3m AFTER WITHDRAWAL OF RODS.

 File:
 P:2200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT118A.CP5

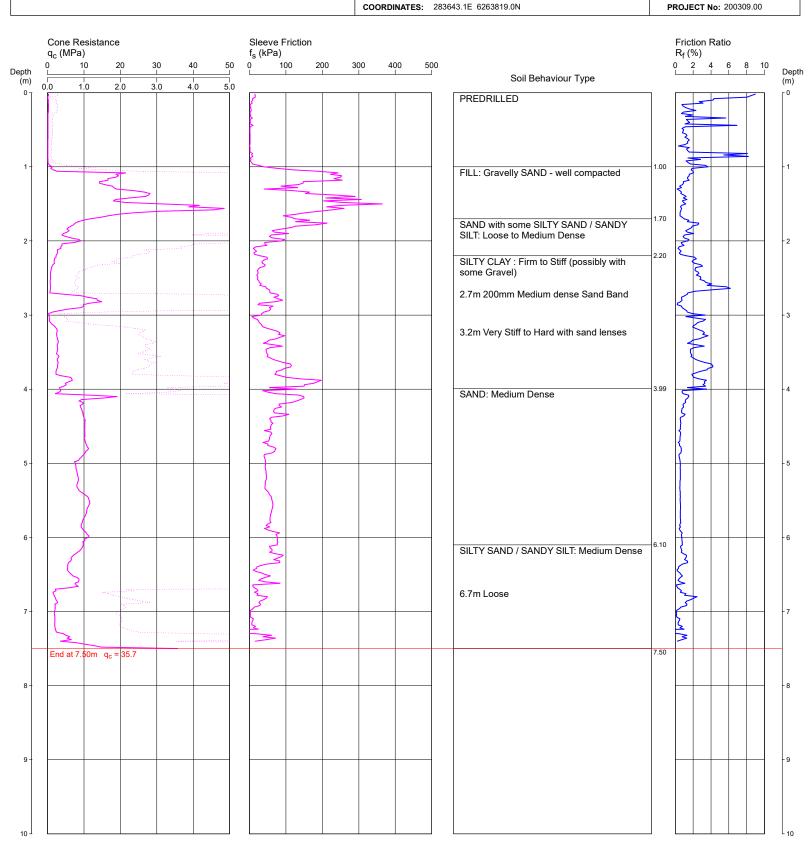
 Cone ID:
 161225
 Type: I-CFXY-10

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS


REDUCED LEVEL: 24.5m AHD

CPT119 Page 1 of 1

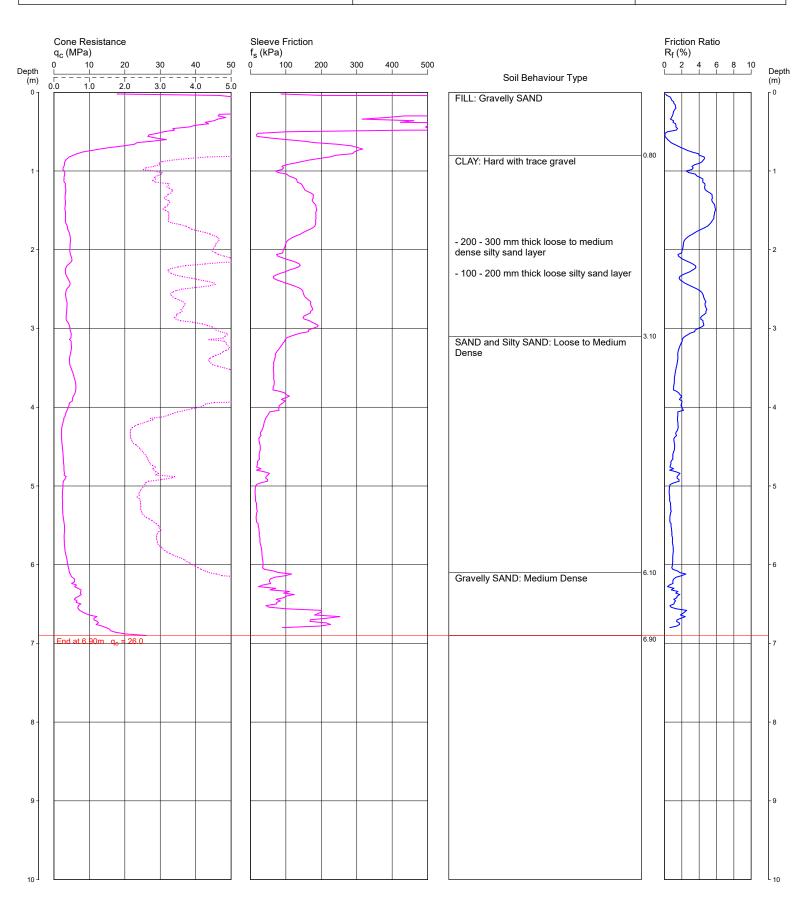
DATE

PROJECT No: 200309.00

15/01/2021

REMARKS: AUGER TO 1.0m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO BENDING IN GRAVEL. HOLE COLLAPSED AT 0.1m AFTER WITHDRAWAL OF RODS.

File: \\dpnwsnas01\Projects\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT119.CP5 Cone ID: 161225 Type: I-CFXY-10


CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 24.3m AHD

COORDINATES: 283579.1E 6263865.6N

REMARKS: TEST DISCONTINUED DUE TO SUDDEN BEND IN GRAVEL. HOLE COLLAPSED AT 0.6m AFTER WITHDRAWAL OF RODS.

 File:
 P:\200309.00 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT120.CP5

 Cone ID:
 160626
 Type: I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 23.9m AHD

COORDINATES: 283571.8E 6263791.5N

CPT12J Page 1 of 1 DATE 14/01/2021 PROJECT No: 200309.00

0.64			Ratio		
0.64					
0.64					
0.64	5				
0.64					
		+	$\left \right $		
	-	+	++	\rightarrow	_
					-
			\square	\square	
		+	+	-	-
		\perp	\square	\square	\square
		+	++	+	-
			\square		
					ļ
		- I - '	1 1		

REMARKS: DUMMY CONE FROM 0.64 TO 0.65m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO CONE TIP REFUSAL IN FILLING. NO GROUNDWATER OBSERVED AFTER WITHDRAWAL OF RODS.

 File:
 P:\200309.00
 EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT121.CP5

 Cone ID:
 160626
 Type:
 I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 23.9m AHD

COORDINATES: 283571.8E 6263791.5N

CPT121A Page 1 of 1 DATE 14/01/2021 PROJECT No: 200309.00

	C	Cone R I _c (MPa	tesista a)	nce					Sleeve I f _s (kPa)	Friction							Fri R _f	ction (%) 2	Ratio	D		
Depth (m)	0		10	20 2.0	30	0 4 0 4	10 5 1 .0 5	50 	0 1	00 2	00 3	300	400 5 I	00	Soil Behaviour Type		0	2 4	4 6	38	10	Dept (m) Γ ⁰
(iii) [⁰]	0.0					0 4	.0 5	5.0 		-				1	FILL: Gravelly CLAY		`			ГТ		(iii) [⁰
F	1	End at ().14m	q _c = 58	.5											0.14						_
1 -	-																-	+-	$\left - \right $	\vdash	_	- 1
2 -	-			_														-		\vdash	_	- 2
3 -	-																_	+	$\left - \right $	\vdash	_	- 3
4 -	-			_													-	+	$\left - \right $	\vdash	_	- 4
5 -	-																_	+	$\left - \right $	\vdash	_	- 5
6 -	-			_													-	+	$\left - \right $	\vdash	_	- 6
7 -	-												_				-	+	$\left - \right $	\vdash	_	- 7
8 -	-							-						-				+		\vdash	_	- 8
9 -	╞							-					+	-			\vdash	+	\vdash	\vdash	\neg	- 9
10	L																					L ₁₀

REMARKS: DUMMY CONE FROM 0.14 TO 0.67m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO CONE TIP REFUSAL IN FILLING. NO GROUNDWATER OBSERVED AFTER WITHDRAWAL OF RODS.

 File:
 P:\200309.00 EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT121A.CP5

 Cone ID:
 160626
 Type:
 I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 23.9m AHD

COORDINATES: 283571.8E 6263791.5N

CPT121B Page 1 of 1 DATE 15/01/2021

PROJECT No: 200309.00

	Resistan a)	се				Sleeve	e Friction								iction F	Ratio	
I _C (MP	a) 10	20	30	40	50	т _s (кра 0	1) 100	200 3	00 40	00 500)			0 0	(%) 2 4	6	8
	1.0	2.0	3.0	4.0	5.0	L	1		1	L Î		Soil Behaviour Type					
)	1.0	2.0	3.0	4.0	5.0	K					Г	FILL: Silty CLAY					
						Ś						FILL: SAND	0.20	5	-		
2						}								3			
din.						2								2	\geq		
End at (). 8 4m q	a = 34 9			_								0.84	-			
		_													+		_
		_			_		_	_									-
					-										+		
																	1
	1		1	1		1			1	1 I			1		1 1	1	1

REMARKS: DUMMY CONE FROM 0.84 TO 2.5m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO LOST OF A DUMMY CONE. HOLE COLLAPSED AT 0.2m AFTER WITHDRAWAL OF RODS.

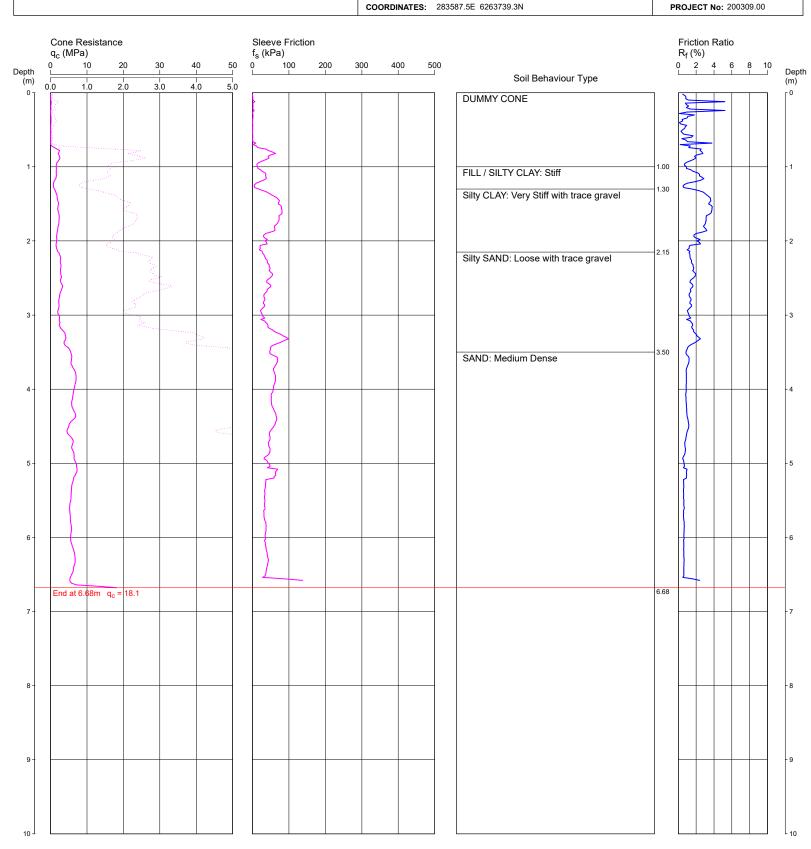
 File: \\dpnwsnas01\Projects\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT121B.CP5

 Cone ID: 161225
 Type: I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS


REDUCED LEVEL: 24.3m AHD

CPT122 Page 1 of 1

DATE

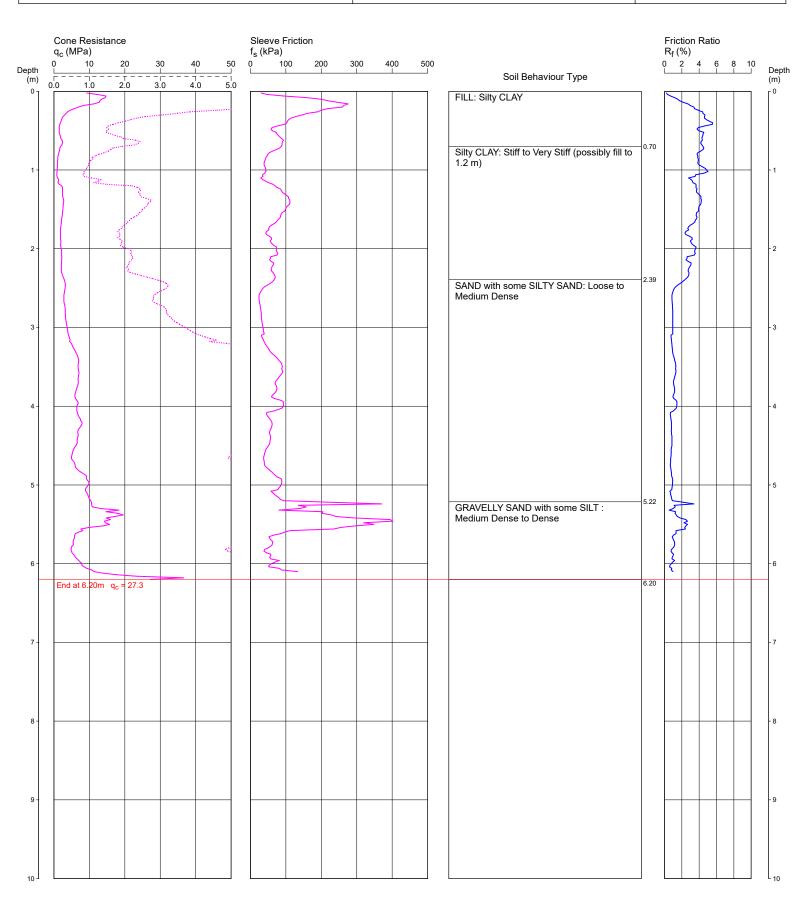
PROJECT No: 200309.00

14/01/2021

REMARKS: DUMMY CONE FROM 0.0 TO 1.0m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO SUDDEN BEND IN GRAVEL. HOLE COLLAPSED AT 0.9m AFTER WITHDRAWAL OF RODS.

File: \\dpnwsnas01\Projects\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT122.CP5 Cone ID: 160626 Type: I-CFXY-10

Douglas Partners Geotechnics | Environment | Groundwater


CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 24.2m AHD

COORDINATES: 283497.0E 6263696.6N

REMARKS: TEST DISCONTINUED DUE TO BENDING IN GRAVEL.

HOLE COLLAPSED AT 0.7m AFTER WITHDRAWAL OF RODS.

 File:
 P:\200309.00 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT123.CP5

 Cone ID:
 161225
 Type: I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 24.2m AHD

COORDINATES: 283555.7E 6263661.8N

CPT125 Page 1 of 1

DATE

PROJECT No: 200309.00

15/01/2021

Cone Resistance _c (MPa)				Sleev	e Frictio a)	n							Friction Ratio R _f (%) 0 2 4 6 8 10						
	10	20	30	40	50	т _s (кр 0	a) 100	200	30	0 4	00 50	0			rt _f (2 4	6	8	
				4.0	5.0	Ĺ				-			Soil Behaviour Type		Ĺ	_	1	1	-
	1.0	2.0	3.0		5.0								DUMMY CONE						
													DOMINIT CONE		1				
															1				
End at 0	.54m q	a = 52.8												0.54					-
	"																		
	_						_												
		_																	
							_												
																			-
	+	-													-				
		_					_												
																			-
	1		1	1		1					1		1		1		1		

REMARKS: DUMMY CONE FROM 0.0 TO 0.5m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO BENDING IN FILLING. HOLE COLLAPSED AT 0.3m AFTER WITHDRAWAL OF RODS.

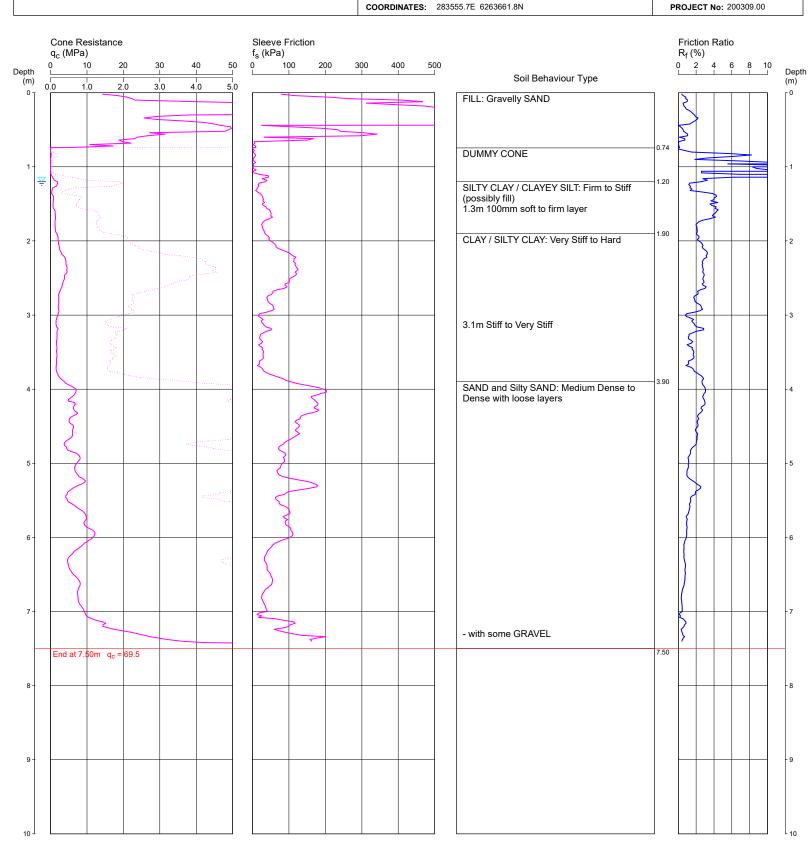
 File:
 P:\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT125.CP5

 Cone ID:
 161225
 Type: I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS


REDUCED LEVEL: 24.2m AHD

CPT125A Page 1 of 1

DATE

PROJECT No: 200309.00

15/01/2021

REMARKS: DUMMY CONE FROM 0.74 TO 1.20m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO BENDING IN GRAVEL. GROUNDWATER OBSERVED AT 1.2m AFTER WITHDRAWAL OF RODS.

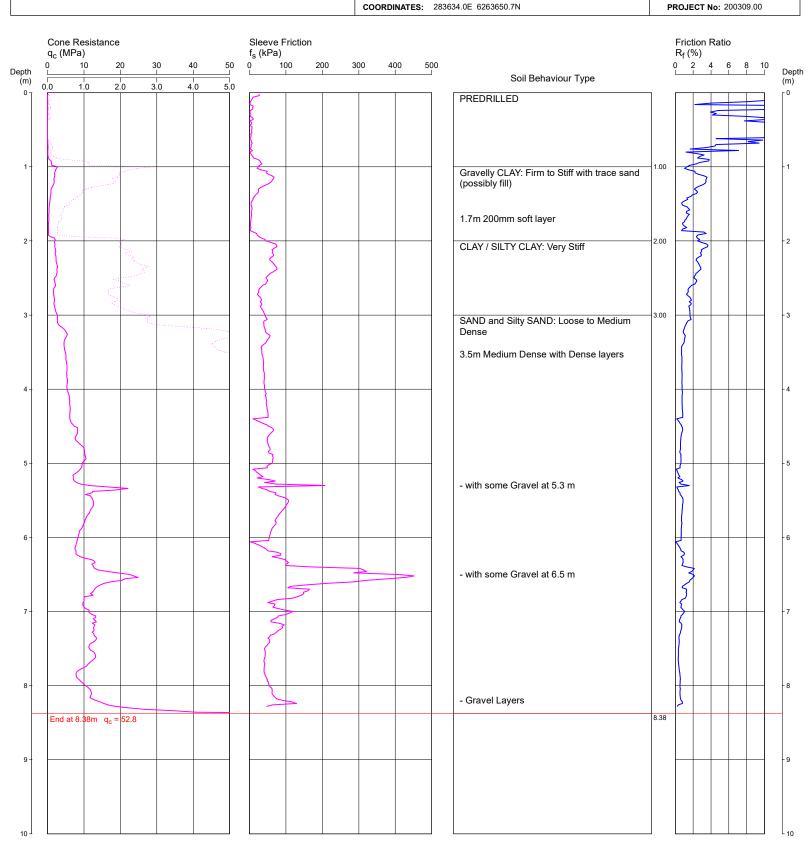
Water depth after test: 1.20m depth (assumed)

File: P:\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT125A.CP5 Cone ID: 161225 Type: I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS


REDUCED LEVEL: 24.6m AHD

CPT127 Page 1 of 1

DATE

PROJECT No: 200309.00

15/01/2021

REMARKS: AUGER TO 1.0m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO REFUSAL IN GRAVEL. HOLE COLLAPSED AT 0.8m AFTER WITHDRAWAL OF RODS.

File: P:\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT127.CP5 Cone ID: 161225 Type: I-CFXY-10

ConePlot Version 5.9.2 © 2003 Douglas Partners Pty Ltd **Douglas Partners** Geotechnics | Environment | Groundwater

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

CPT128 Page 1 of 1

REDUCED LEVEL: 24.4m AHD COORDINATES: 283581.1E 6263598.4N

DATE 15/01/2021
PROJECT No: 200309.00

W do		Cone I q _c (MF	Resistar Pa)	nce				Sleeve F f _s (kPa)	- rictior								F	₹ _f (?	tion R %)				
1 1	Depth	0	10	20	30			0 1	00	200	30	10 4	00 5	00	Soil Behaviour Type		0 L	2	2 4	6	8	10	Depth (m)
1 -	(۱۱۱) ۲ ⁰	0.0	1.0	2.0	3.0	4.0 5	.o 1	4	1					1			Г			-			(m) [⁰
1 1 <td></td> <td>0.30</td> <td>)</td> <td>جح</td> <td></td> <td></td> <td></td> <td></td> <td></td>																0.30)	جح					
1 0 <td></td> <td>_</td> <td></td> <td></td> <td>FILL: Gravelly SAND</td> <td></td> <td></td> <td>Ś</td> <td></td> <td></td> <td></td> <td></td> <td></td>												_			FILL: Gravelly SAND			Ś					
1 0 <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>					5			2										•					
Image: Sold Imag	1 -													-	DUMMY CONE	0.0			$ \rightarrow$			3	- 1
					~				-														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		End at	1.34m c	q _c = 50.5												1.34							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																							
	2 -						-							-					\square			_	- 2
	3 -		_							_				-								_	- 3
	4 -		_											-					⊢			_	- 4
	5 -									_				-					<u> </u>			_	- 5
	6 -													-					⊢	_			- 6
9-	7 -		_																\vdash			_	- 7
9-																							
9-																							
9-																							
9-	8-																		\vdash			_	- 8
	9																						- 9
	-																						-
	10																						- 10

REMARKS: DUMMY CONE FROM 0.84 TO 1.20m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO BENDING IN FILLING. HOLE COLLAPSED AT 0.3m AFTER WITHDRAWAL OF RODS.

 File:
 P:/200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT128.CP5

 Cone ID:
 161225
 Type:
 I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

CPT129 Page 1 of 1

REDUCED LEVEL: 24.5m AHD

COORDINATES: 283822.1E 6263680.7N

DATE 15/01/2021 PROJECT No: 200309.00

	Cone Resistance q _c (MPa)					Friction					Friction Ratio R _f (%)				
Depth (m)	0 10	20		40 50	0 1	00 200) 300	400	500	Soil Behaviour Type	0	2 4	6 8 1	10 J Depth (m)	
0	0.0 1.0		3.0	4.0 5.0						DUMMY CONE	VI				
1-		······	·····							Silty CLAY with some SAND: Hard	.00	2	,	1	
2 - 3 -										Silty SAND: Loose to Medium Dense	.00			- 2	
4						-				- with some GRAVEL				- 4	
5 -	End at 4.0	2m q _c = 32.4								4	.02			5	
6-														6	
7 -														7	
8 -														8	
9-														- 9	

REMARKS: AUGER TO 1.0m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO BENDING IN GRAVEL. HOLE COLLAPSED AT 2.5m AFTER WITHDRAWAL OF RODS.

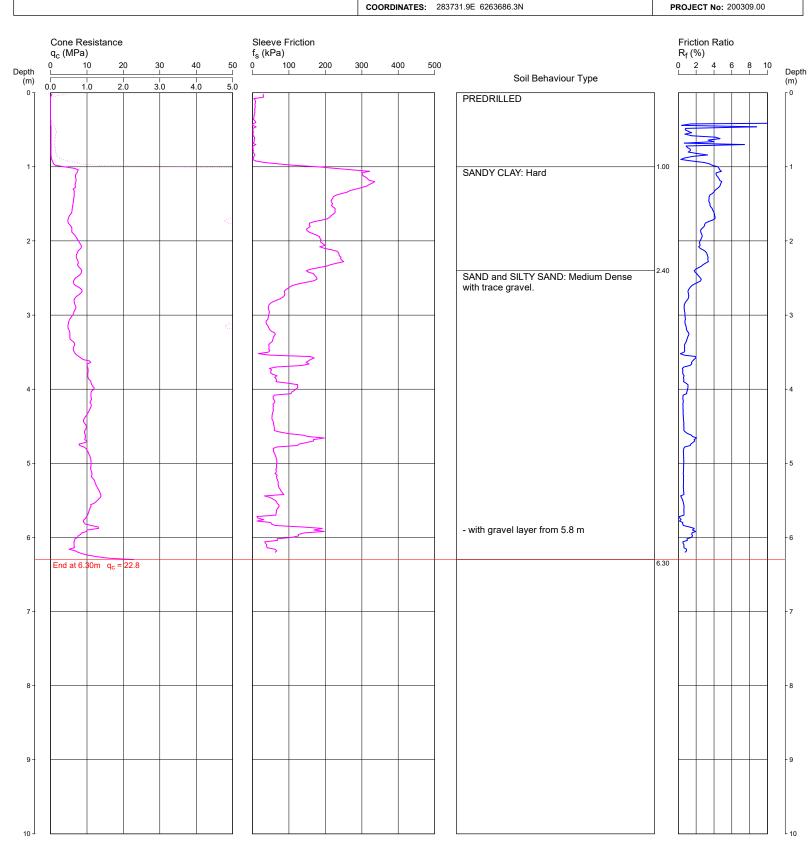
 File:
 P:\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT129.CP5

 Cone ID:
 161225
 Type:
 I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: ROCLA PIPES, PROPOSED REDEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS


REDUCED LEVEL: 24.3m AHD

CPT130 Page 1 of 1

DATE

PROJECT No: 200309.00

15/01/2021

REMARKS: AUGER TO 1.0m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO BENDING IN GRAVEL. HOLE COLLAPSED AT 0.9m AFTER WITHDRAWAL OF RODS.

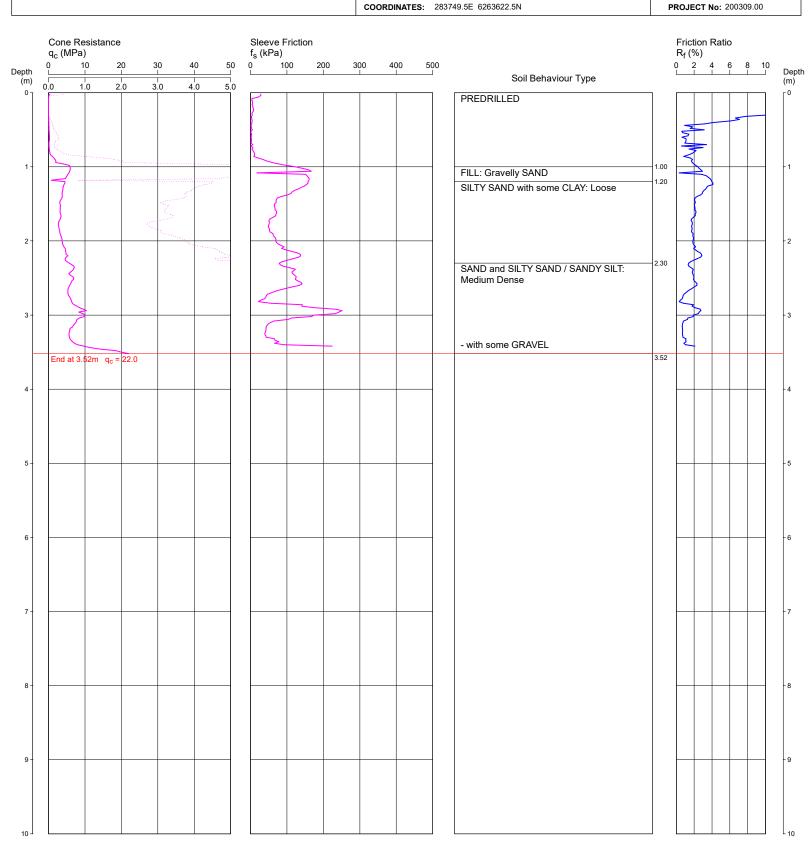
File: \\dpnwsnas01\Projects\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT130.CP5 Cone ID: 161225 Type: I-CFXY-10

Geotechnics | Environment | Groundwater

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS


REDUCED LEVEL: 24.2m AHD

CPT131 Page 1 of 1

DATE

PROJECT No: 200309.00

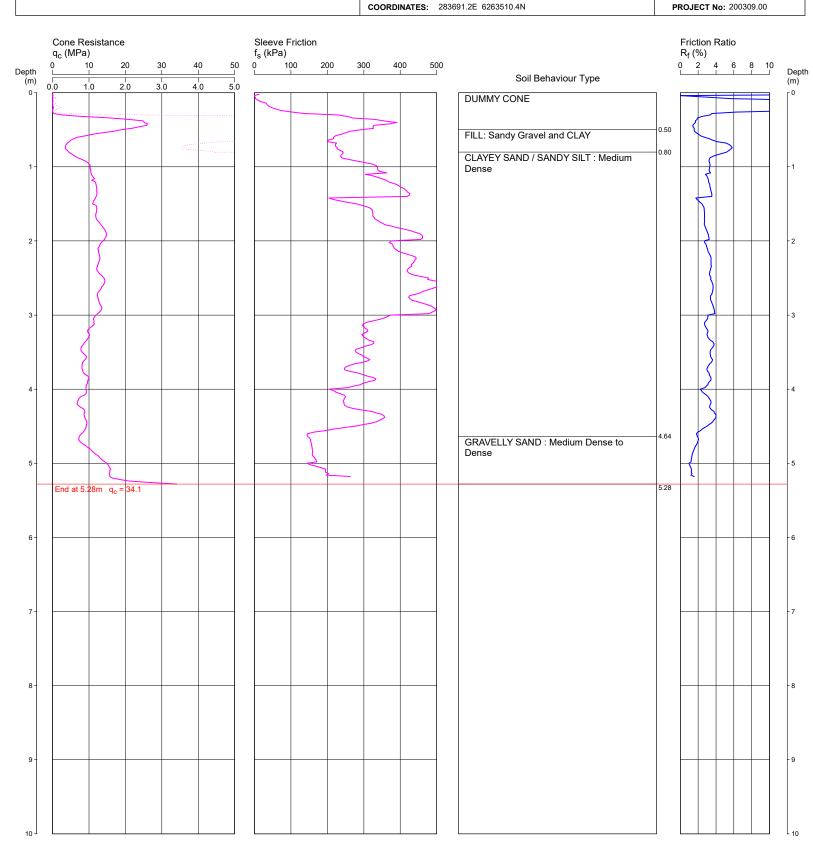
15/01/2021

REMARKS: AUGER TO 1.0m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO BENDING IN GRAVEL. HOLE COLLAPSED AT 0.7m AFTER WITHDRAWAL OF RODS.

File: P:\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT131.CP5 Cone ID: 161225 Type: I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT


LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 24.0m AHD

CPT132 Page 1 of 1

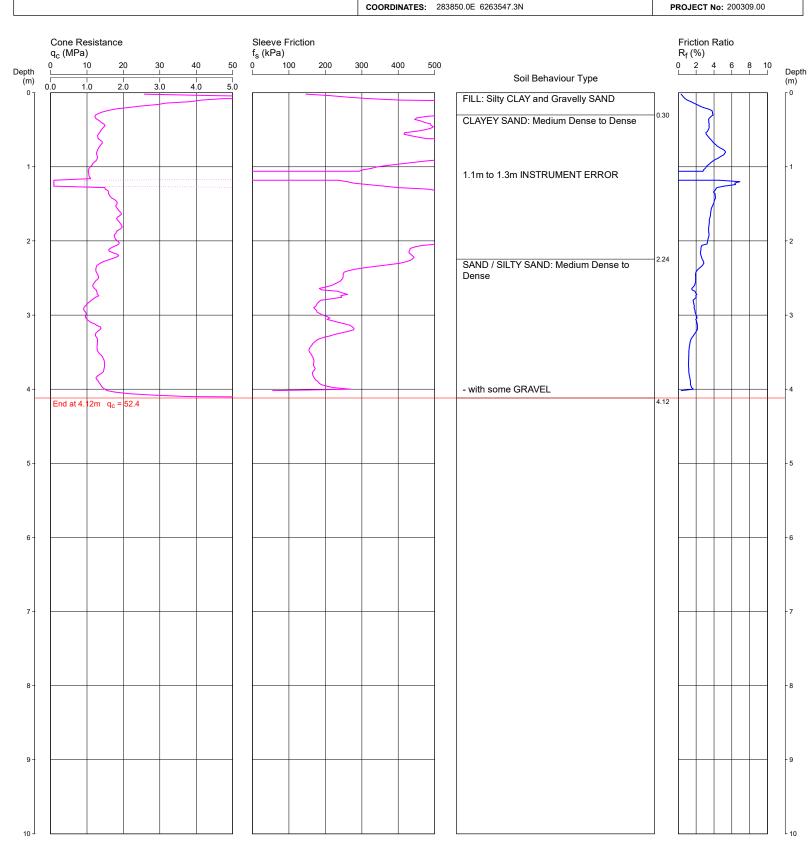
DATE

14/01/2021 PROJECT No: 200309.00

REMARKS: DUMMY CONE FROM 0.0 TO 0.5m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO BENDING IN GRAVEL. HOLE COLLAPSED AT 4.9m AFTER WITHDRAWAL OF RODS.

File: P:\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT132.CP5 Cone ID: 160626 Type: I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD


PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 24.3m AHD

CPT133 Page 1 of 1 DATE 14/01/2021

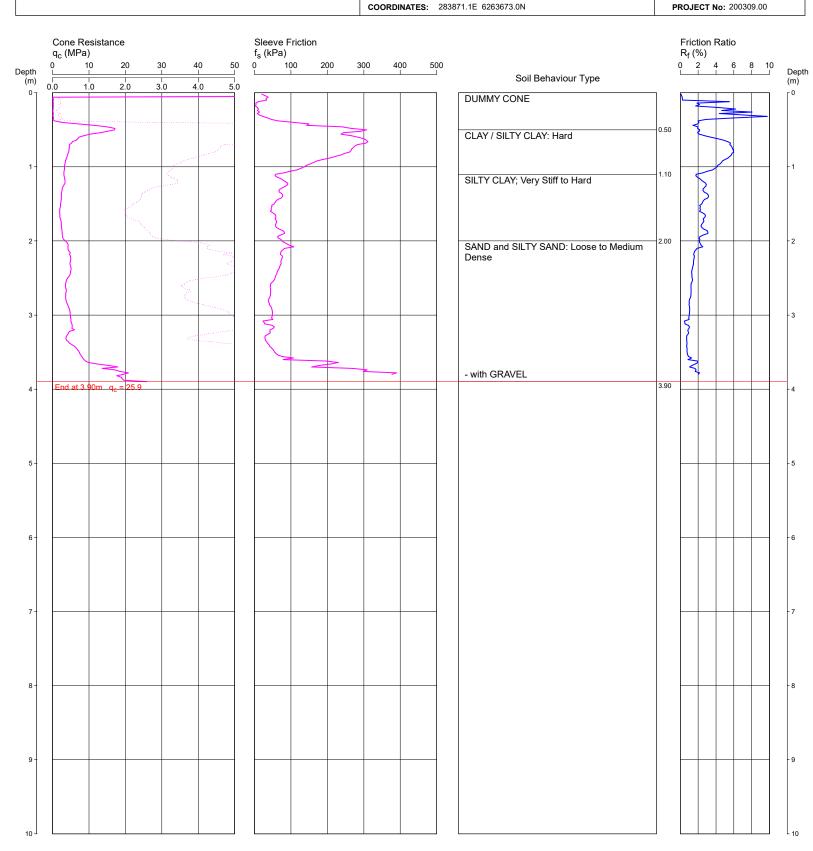
PROJECT No: 200309.00

REMARKS: TEST DISCONTINUED DUE TO REFUSAL IN GRAVEL. HOLE COLLAPSE AT 3.6m AFTER WITHDRAWAL OF RODS.

File: P:\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT133.CP5 Cone ID: 160626 Type: I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT


LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 24.6m AHD

CPT134 Page 1 of 1

DATE

14/01/2021 PROJECT No: 200309.00

REMARKS: DUMMY CONE FROM 0.0 TO 0.5m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO BENDING IN GRAVEL. HOLE COLLAPSED AT 1.1m AFTER WITHDRAWAL OF RODS.

File: P:\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT134.CP5 Cone ID: 160626 Type: I-CFXY-10

CLIENT: JBS&G AUSTRALIA PTY LTD

PROJECT: PROPOSED INDUSTRIAL DEVELOPMENT

LOCATION: 158-164 OLD BATHURST RD, EMU PLAINS

REDUCED LEVEL: 24.7m AHD

COORDINATES: 283917.1E 6263634.4N

CPT135 Page 1 of 1

DATE

PROJECT No: 200309.00

14/01/2021

Cone Resistance Sleeve Friction Friction Ratio q_c (MPa) f_s (kPa) R_f (%) 10 30 40 50 0 100 200 300 400 500 0 2 4 6 8 10 0 20 Depth (m) Depth Soil Behaviour Type . (m) 20 3.0 5.0 0.0 1.0 4.0 - 0 0 -DUMMY CONE 0.55 CLAYEY SAND: Medium Dense to Dense 1 1.91 SILTY SAND and SAND : Medium Dense 2 2 3 3 3.1 - with Gravel from 3.1 m 2 3.26 End at 3.26m q_c = 25.8 Δ 5 - 5 6 6 7 8 8 9 9 10

REMARKS: DUMMY CONE FROM 0.0 TO 0.55m DEPTH TO PENETRATE FILLING. TEST DISCONTINUED DUE TO BENDING IN GRAVEL. NO GROUNDWATER OBSERVED AFTER WITHDRAWAL OF RODS.

 File:
 P:\200309.02 - EMU PLAINS, 158-164 Old Bathurst Road\4.0 Field Work\4.2 Testing\CPT135.CP5

 Cone ID:
 160626
 Type:
 I-CFXY-10

Appendix D

Laboratory Test Results

Bore	Top of	Base of	Sample	рН	Chlorides	Sulphates		Aggressivity [AS	S2159 pH criteria]		Soil Texture Group	Textural	EC _{1:5}	EC _e	Salinity Class
							Soil Condition "A" use	ed for high permeable	Soil Condition "B" us	ed for low permeable					
	soil unit	soil unit	Depth			(mg/kg)	natura	al soils	natural soils an	d existing filling		Factor [M]	[Lab.]	[M x EC _{1:5}]	
	(m)	(m)	(m)		(mg/kg)	(mg/kg)	To Concrete	To Steel	To Concrete	To Steel	[after DLWC]	[after DLWC]	(µS/cm)	(dS/m)	[Richards 1954]
101	0.00	0.20	0.10	10.8			-	-	Non-Aggressive	Non-Aggressive	Sandy loam	14	370	5.2	Moderately Saline
101	0.40	0.50	0.45	11.2			-	-	Non-Aggressive	Non-Aggressive	Sandy loam	14	680	9.5	Very Saline
101	1.00	1.38	1.19	12.1			-	-	Non-Aggressive	Non-Aggressive	Sandy loam	14	2800	39.2	Highly Saline
101	1.45	1.50	1.47	12.0			-	-	Non-Aggressive	Non-Aggressive	Sandy loam	14	2600	36.4	Highly Saline
101	2.00	2.45	2.23	11.9			-	-	Non-Aggressive	Non-Aggressive	Sandy loam	14	2000	28.0	Highly Saline
103	0.00	0.20	0.10	8.2			-	-	Non-Aggressive	Non-Aggressive	Clay loam	9	200	1.8	Non Saline
103	0.40	0.50	0.45	8.4			Mild	Non-Aggressive	-	-	Clay loam	9	220	2.0	Non Saline
103	0.90	1.00	0.95	8.3			Mild	Non-Aggressive	-	-	Clay loam	9	50	0.5	Non Saline
103	1.45	1.50	1.47	8.5	10	110	Mild	Non-Aggressive	-	-	Clay loam	9	160	1.4	Non Saline
103	2.00	2.45	2.23	8.0			Mild	Non-Aggressive	-	-	Clay loam	9	32	0.3	Non Saline
105	0.10	0.20	0.15	8.8			-	-	Non-Aggressive	Non-Aggressive	Clay loam	9	110	1.0	Non Saline
105	0.40	0.50	0.45	8.5			-	-	Non-Aggressive	Non-Aggressive	Clay loam	9	190	1.7	Non Saline
105	1.00	1.45	1.23	8.6			Mild	Non-Aggressive	-	-	Clay loam	9	130	1.2	Non Saline
105	1.45	1.50	1.45	8.7	71	38	Mild	Non-Aggressive	-	-	Clay loam	9	94	0.8	Non Saline
105	2.00	2.45	2.23	8.6			Mild	Non-Aggressive	-	-	Clay loam	9	120	1.1	Non Saline
109	0.00	0.20	0.10	10.7			-	-	Non-Aggressive	Non-Aggressive	Sandy loam	14	370	5.2	Moderately Saline
109	0.40	0.50	0.45	11.1			-	-	Non-Aggressive	Non-Aggressive	Sandy loam	14	510	7.1	Moderately Saline
109	0.90	1.00	0.95	10.9			-	-	Non-Aggressive	Non-Aggressive	Sandy loam	14	450	6.3	Moderately Saline
109	1.00	1.45	1.23	8.0	<10	280	-	-	Non-Aggressive	Non-Aggressive	Light medium clay	8	150	1.2	Non Saline
109	2.00	2.45	2.23	8.0			-	-	Non-Aggressive	Non-Aggressive	Light medium clay	8	71	0.6	Non Saline
110	0.10	0.20	0.15	8.0			-	-	Non-Aggressive	Non-Aggressive	Light medium clay	8	330	2.6	Slightly Saline
110	0.40	0.50	0.45	8.1			-	-	Non-Aggressive	Non-Aggressive	Clay loam	9	210	1.9	Non Saline
110	0.90	1.00	0.95	8.4			-	-	Non-Aggressive	Non-Aggressive	Clay loam	9	250	2.3	Slightly Saline
110	1.45	1.50	1.47	7.8			-	-	Non-Aggressive	Non-Aggressive	Light medium clay	8	72	0.6	Non Saline
110	2.00	2.45	2.23	8.2	10	<10	-	-	Non-Aggressive	Non-Aggressive	Light medium clay	8	21	0.2	Non Saline

Table D1: Summary of Borehole Data, Laboratory Tests and Assessments

Notes: EC_{1.5} Electrical Conductivity (1:5 Soil/Water suspension)

M = Multiplier factor based on soil texture

 EC_e Electrical Conductivity = $EC_{1.5} * M$

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 259697

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Gavin Boyd
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>200309.00, Emu Plains</u>
Number of Samples	26 SOIL
Date samples received	18/01/2021
Date completed instructions received	18/01/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details										
Date results requested by	25/01/2021									
Date of Issue	22/01/2021									
NATA Accreditation Number 2901. This document shall not be reproduced except in full.										
Accredited for compliance with	ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *									

<u>Results Approved By</u> Diego Bigolin, Team Leader, Inorganics Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 259697 Revision No: R00

Page | 1 of 10

Misc Inorg - Soil						
Our Reference		259697-1	259697-2	259697-3	259697-4	259697-5
Your Reference	UNITS	101	101	101	101	101
Depth		0-0.2	0.4-0.5	1.0-1.38	1.45-1.5	2.0-2.45
Date Sampled		14/01/2021	14/01/2021	14/01/2021	14/01/2021	14/01/2021
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Date analysed	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
pH 1:5 soil:water	pH Units	10.8	11.2	12.1	12.0	11.9
Miss Inorg Soil	•		1			

Misc Inorg - Soil						
Our Reference		259697-6	259697-7	259697-8	259697-9	259697-10
Your Reference	UNITS	103	103	103	103	103
Depth		0-0.2	0.4-0.5	0.9-1.0	1.45-1.5	2.0-2.45
Date Sampled		14/01/2021	14/01/2021	14/01/2021	14/01/2021	14/01/2021
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Date analysed	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
pH 1:5 soil:water	pH Units	8.2	8.4	8.3	8.5	8.0
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	10	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	110	[NA]

Misc Inorg - Soil						
Our Reference		259697-11	259697-12	259697-13	259697-14	259697-15
Your Reference	UNITS	105	105	105	105	105
Depth		0.1-0.2	0.4-0.5	1-1.45	1.45-1.5	2-2.45
Date Sampled		14/01/2021	14/01/2021	14/01/2021	14/01/2021	14/01/2021
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Date analysed	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
pH 1:5 soil:water	pH Units	8.8	8.5	8.6	8.7	8.6
Chloride, Cl 1:5 soil:water	mg/kg		[NA]	[NA]	71	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	38	[NA]

Misc Inorg - Soil						
Our Reference		259697-16	259697-17	259697-18	259697-19	259697-20
Your Reference	UNITS	109	109	109	109	109
Depth		0-0.2	0.4-0.5	0.9-1.0	1-1.45	2.0-2.45
Date Sampled		14/01/2021	14/01/2021	14/01/2021	14/01/2021	14/01/2021
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Date analysed	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
pH 1:5 soil:water	pH Units	10.7	11.1	10.9	8.0	8.0
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	<10	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	280	[NA]
Misc Inorg - Soil						
Our Reference		259697-21	259697-22	259697-23	259697-24	259697-25
Your Reference	UNITS	110	110	110	110	110
Depth		0.1-0.2	0.4-0.5	0.9-1.0	1.45-1.5	2.0-2.45
Date Sampled		14/01/2021	14/01/2021	14/01/2021	14/01/2021	14/01/2021
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Date analysed	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
pH 1:5 soil:water	pH Units	8.0	8.1	8.4	7.8	8.2
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	[NA]	10
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	[NA]	<10

Texture and Salinity*						
Our Reference		259697-1	259697-2	259697-3	259697-4	259697-5
Your Reference	UNITS	101	101	101	101	101
Depth		0-0.2	0.4-0.5	1.0-1.38	1.45-1.5	2.0-2.45
Date Sampled		14/01/2021	14/01/2021	14/01/2021	14/01/2021	14/01/2021
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Date analysed	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Electrical Conductivity 1:5 soil:water	µS/cm	370	680	2,800	2,600	2,000
Texture Value	-	14	14	14	14	14
Texture	-	SANDY LOAM	SANDY LOAM	SANDY LOAM	SANDY LOAM	SANDY LOAM
ECe	dS/m	5.2	9.6	40	36	28
Class	-	MODERATELY SALINE	VERY SALINE	HIGHLY SALINE	HIGHLY SALINE	HIGHLY SALINE

Texture and Salinity*						
Our Reference		259697-6	259697-7	259697-8	259697-9	259697-10
Your Reference	UNITS	103	103	103	103	103
Depth		0-0.2	0.4-0.5	0.9-1.0	1.45-1.5	2.0-2.45
Date Sampled		14/01/2021	14/01/2021	14/01/2021	14/01/2021	14/01/2021
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Date analysed	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Electrical Conductivity 1:5 soil:water	µS/cm	200	220	50	160	32
Texture Value	-	9.0	9.0	9.0	9.0	9.0
Texture	-	CLAY LOAM				
ECe	dS/m	<2	<2	<2	<2	<2
Class	-	NON SALINE				

Texture and Salinity*						
Our Reference		259697-11	259697-12	259697-13	259697-14	259697-15
Your Reference	UNITS	105	105	105	105	105
Depth		0.1-0.2	0.4-0.5	1-1.45	1.45-1.5	2-2.45
Date Sampled		14/01/2021	14/01/2021	14/01/2021	14/01/2021	14/01/2021
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Date analysed	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Electrical Conductivity 1:5 soil:water	µS/cm	110	190	130	94	120
Texture Value	-	9.0	9.0	9.0	9.0	9.0
Texture	-	CLAY LOAM				
ECe	dS/m	<2	<2	<2	<2	<2
Class	-	NON SALINE				

Texture and Salinity*						
Our Reference		259697-16	259697-17	259697-18	259697-19	259697-20
Your Reference	UNITS	109	109	109	109	109
Depth		0-0.2	0.4-0.5	0.9-1.0	1-1.45	2.0-2.45
Date Sampled		14/01/2021	14/01/2021	14/01/2021	14/01/2021	14/01/2021
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Date analysed	-	20/01/2021	20/01/2021	20/01/2021	20/01/2021	20/01/2021
Electrical Conductivity 1:5 soil:water	μS/cm	370	510	450	150	71
Texture Value	-	14	14	14	8.0	8.0
Texture	-	SANDY LOAM	SANDY LOAM	SANDY LOAM	LIGHT MEDIUM CLAY	LIGHT MEDIUM CLAY
ECe	dS/m	5.2	7.2	6.3	<2	<2
Class	-	MODERATELY SALINE	MODERATELY SALINE	MODERATELY SALINE	NON SALINE	NON SALINE
Texture and Salinity*						
Our Reference		259697-21	259697-22	259697-23	259697-24	259697-25
	UNITS	259697-21 110	259697-22 110	259697-23 110	259697-24 110	259697-25 110
Our Reference	UNITS					
Our Reference Your Reference	UNITS	110	110	110	110	110
Our Reference Your Reference Depth	UNITS	110 0.1-0.2	110 0.4-0.5	110 0.9-1.0	110 1.45-1.5	110 2.0-2.45
Our Reference Your Reference Depth Date Sampled	UNITS	110 0.1-0.2 14/01/2021	110 0.4-0.5 14/01/2021	110 0.9-1.0 14/01/2021	110 1.45-1.5 14/01/2021	110 2.0-2.45 14/01/2021
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	110 0.1-0.2 14/01/2021 SOIL	110 0.4-0.5 14/01/2021 SOIL	110 0.9-1.0 14/01/2021 SOIL	110 1.45-1.5 14/01/2021 SOIL	110 2.0-2.45 14/01/2021 SOIL
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared	-	110 0.1-0.2 14/01/2021 SOIL 20/01/2021	110 0.4-0.5 14/01/2021 SOIL 20/01/2021	110 0.9-1.0 14/01/2021 SOIL 20/01/2021	110 1.45-1.5 14/01/2021 SOIL 20/01/2021	110 2.0-2.45 14/01/2021 SOIL 20/01/2021
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed	-	110 0.1-0.2 14/01/2021 SOIL 20/01/2021 20/01/2021	110 0.4-0.5 14/01/2021 SOIL 20/01/2021 20/01/2021	110 0.9-1.0 14/01/2021 SOIL 20/01/2021 20/01/2021	110 1.45-1.5 14/01/2021 SOIL 20/01/2021 20/01/2021	110 2.0-2.45 14/01/2021 SOIL 20/01/2021 20/01/2021
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Electrical Conductivity 1:5 soil:water	-	110 0.1-0.2 14/01/2021 SOIL 20/01/2021 20/01/2021 330	110 0.4-0.5 14/01/2021 SOIL 20/01/2021 20/01/2021 210	110 0.9-1.0 14/01/2021 SOIL 20/01/2021 20/01/2021 250	110 1.45-1.5 14/01/2021 SOIL 20/01/2021 20/01/2021 72	110 2.0-2.45 14/01/2021 SOIL 20/01/2021 20/01/2021 21
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Electrical Conductivity 1:5 soil:water Texture Value	- - μS/cm -	110 0.1-0.2 14/01/2021 SOIL 20/01/2021 20/01/2021 330 8.0 LIGHT MEDIUM	110 0.4-0.5 14/01/2021 SOIL 20/01/2021 20/01/2021 210 9.0	110 0.9-1.0 14/01/2021 SOIL 20/01/2021 20/01/2021 250 9.0	110 1.45-1.5 14/01/2021 SOIL 20/01/2021 20/01/2021 72 8.0 LIGHT MEDIUM	110 2.0-2.45 14/01/2021 SOIL 20/01/2021 20/01/2021 21 8.0 LIGHT MEDIUM

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
INORG-123	Determined using a "Texture by Feel" method.

QUALITY	QUALITY CONTROL: Misc Inorg - Soil								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			20/01/2021	6	20/01/2021	20/01/2021		20/01/2021	
Date analysed	-			20/01/2021	6	20/01/2021	20/01/2021		20/01/2021	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	6	8.2	8.2	0	102	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	118	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	109	

QUALITY	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			[NT]	13	20/01/2021	20/01/2021		20/01/2021	[NT]
Date analysed	-			[NT]	13	20/01/2021	20/01/2021		20/01/2021	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	13	8.6	8.7	1	101	[NT]

QUALITY	QUALITY CONTROL: Misc Inorg - Soil							Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]		
Date prepared	-			[NT]	21	20/01/2021	20/01/2021		[NT]	[NT]		
Date analysed	-			[NT]	21	20/01/2021	20/01/2021		[NT]	[NT]		
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	21	8.0	8.2	2	[NT]	[NT]		

QUALITY C	QUALITY CONTROL: Texture and Salinity*								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			20/01/2021	6	20/01/2021	20/01/2021		20/01/2021	
Date analysed	-			20/01/2021	6	20/01/2021	20/01/2021		20/01/2021	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	6	200	210	5	98	
Texture Value	-		INORG-123	[NT]	6	9.0	9.0	0	[NT]	[NT]

QUALITY C	QUALITY CONTROL: Texture and Salinity*								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			[NT]	13	20/01/2021	20/01/2021		20/01/2021	[NT]
Date analysed	-			[NT]	13	20/01/2021	20/01/2021		20/01/2021	[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	[NT]	13	130	99	27	98	[NT]
Texture Value	-		INORG-123	[NT]	13	9.0	9.0	0	[NT]	[NT]

QUALITY C	QUALITY CONTROL: Texture and Salinity*								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	20/01/2021	20/01/2021			
Date analysed	-			[NT]	21	20/01/2021	20/01/2021			
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	[NT]	21	330	320	3		
Texture Value	-		INORG-123	[NT]	21	8.0	8.0	0	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Project Name:	Emu Plains To:
Project No:	200309.00 Sampler:G Boyd
Project Mgr:	G Boyd Mob. Phone: 0431 496 721
Email:	gavin.boyd@douglaspartners.com.au
Date Required:	Standard Lab Quote No

Envirolab Services 12 Ashley Street, Chatswood Novy Leve Attn: Tania Notaras Phone: 02 9910 6200 Fax: 02 9910 6201 Email: tnotaras@envirolabservices.com.au

				Sample Type			Analytes									
Sample ID	Sample Depth	Lab ID	Sampling Date	S - soil W – water	Container type	рH	eCe	Textural Class	CL, SO4						Notes	3
101	0.0-0.2	(14/1	S	P	•	•	•			<u> </u>	······				
101	0.4-0.5	2	14/1	S	P	•	•	•								
101	1.0-1.38	3	14/1	S	P	•	•	•								
101	1.45-1.5	Ą	14/1	S	Ρ	•	•	•								
101	2.0-2.45	5	14/1	S	Р	•	•	٠						lab Services		
103	0.0-0.2	ما	14/1	S	Р	•	•	•			8	IVIROLAB	Chatswo	12 Ashley St od NSW 2067		
103	0.4-0.5	7	14/1	S	Р	•	•	•		<u>.</u>	Jo	b No:	Pn: (0	2) 9910 6200 2596	h	
103	0.9-1.0	8	14/1	S	P	•	•	•				te Receive		18-01-	2021.	
103	1.45-1.5	٩	14/1	S	Р	•	•	•	•		Ti Be	ne Receive ceived By:	# KG	1515		
103	2.0-2.45	(0	14/1	S	Р	•	•	•				mp Cool/)		18.1'0		
105	0.1-0.2	ч.	14/1	S	Р	•	•	•			Se	curity: ntak) Breker			
105	0.4-0.5	12	14/1	S	Ρ	•	•	•		_			· _			
Lab Repor	rt No	•••••											Phone:	(02) 9809	0666	
Send Results to: Douglas Partners Address; 96 Hermitage Road, West Ryde 2114 Fax: (02) 9809 4095																
Relinquishe				Signed:	Jay			Fime: 16/7 -	– 1pm		Received B	•			e & Time:	
Relinquishe	ed by:		Sign	ed:		Ľ	Date & T	ime:		Received E	By: K-Ger	c	Da	ite & Time:	18-1-21	1575

Douglas Partners Geotechnics · Environment · Gróundwater ()

CHAIN OF CUSTODY

Project Name:	Emu Plains To:	Envirolab Services
Project No:	200309.00 Sampler:G Boyd	12 Ashley Street, Chatswood NSW 2068
Project Mgr:	G Boyd	Attn: Tania Notaras
Email:	gavin.boyd@douglaspartners.com.au	Phone: 02 9910 6200 Fax: 02 9910 6201
Date Required:	Standard Lab Quote No	Email: tnotaras@envirolabservices.com.au

	Sample Type							Analytes										
	Sample ID	Sample Depth	Lab ID	Sampling Date	S - soil W - water	Container type	рН	eCè	Textural Class	CL, SO4							No	otes
	,				<u> </u>		•	•	•						<u> </u>			
	105	1.0-1.45	13	14/1	S	Р			-									
	105	1.45-1.5	14	14/1	s	Р		•	•	•								
	105	2.0-2.45	١٢	14/1	S	P	•	•	•									
	1.09	0.0-0.2	16	14/1	S	Р	•	•	•									
	109	0.4-0.5	12	14/1	S.	P	•	•	•									
	109	0.9-1.0	(8	14/1	S	Р	•	•	•			_						
	109	A) 1-1.45 - 1.45-1.5 -	19	14/1	s	Р	•	•	•	•								
	109	2.0-2.45	50	14/1	s	Р	۲	•	•									
. *	110	0.1-0.2	У	14/1	ş	Р	•	•	•									
	110	0.4-0.5	22	14/1	s	Р	•	•	•							-		
	110	0.9-1.0	23	14/1	S	P	•	•	•			a						_
	110	1.45-1.5	24	14/1	S	Р	•	•	•									
. 1	110	2.0-2.45	25	14/1	S	Р	•	•	•	•			2					
eda	Lab Report No Phone: (02) 9809 0666																	
	Send Res	ults to: Do		Partne	rs Add	iress: 96	Hermita	ge Road	i, West Ry	<u>de 2114</u>					Fax:	(02) 9809 4	1095	
	Relinquishe	ed by:		GB S	Signed:	Jage .		Date & T	Time: 16/7	– 1pm			Received B	y:		Date	& Time:	_
	Relinquishe	ed by:		Sign	ed:	00	[Date & T	ime:		Re	ceived By	1: K.	hore	Da	te & Time:	F-1-21	1575.

, 2

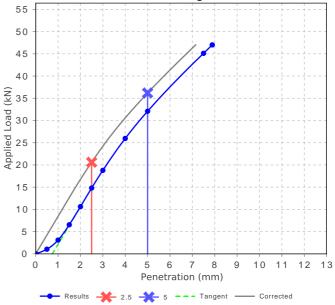
Report Number:	200309.00-1
Issue Number:	1
Date Issued:	01/02/2021
Client:	JBS&G Australia Pty Ltd
	Level 1, 50 Margaret Street, Sydney NSW 2000
Contact:	Rohan Hammond
Project Number:	200309.00
Project Name:	Rocla Site - Proposed Development
Project Location:	158-164 Old Bathurst Road, Emu Plains
Work Request:	6764
Sample Number:	WO-6764A
Date Sampled:	18/01/2021
Dates Tested:	20/01/2021 - 27/01/2021
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	101, Depth: 0 - 0.8m
Material:	Fill/Roadbase: medium to coarse crushed igneous rock

California Bearing Ratio (AS 1289 6.1.1 &	2.1.1)	Min	Max
CBR taken at	5 mm		
CBR %	180		
Method of Compactive Effort	Star	ndard	
Method used to Determine MDD	AS 1289 5	.1.1 &	2.1.1
Method used to Determine Plasticity	Visual As	sessm	nent
Maximum Dry Density (t/m ³)	1.82		
Optimum Moisture Content (%)	14.0		
Laboratory Density Ratio (%)	100.0		
Laboratory Moisture Ratio (%)	100.0		
Dry Density after Soaking (t/m ³)	1.82		
Field Moisture Content (%)	10.4		
Moisture Content at Placement (%)	14.0		
Moisture Content Top 30mm (%)	15.8		
Moisture Content Rest of Sample (%)	14.6		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	48		_
Swell (%)	-0.5		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0.8		
The maximum load has been reached for t Applied Load 47.007 kN, Penetration at Ma mm.			

Douglas Partners Geotechnics | Environment | Groundwater

technics | Environment | Groundwater Douglas Partners Pty Ltd Unanderra Laboratory Unit 1/1 Luso Drive Unanderra NSW 2526 Phone: (02) 4271 1836 Fax: (02) 4271 1897

Email: anes.ibricic@douglaspartners.com.au



Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Anes Ibricic Laboratory Manager Laboratory Accreditation Number: 828

Report Number:	200309.00-1
Issue Number:	1
Date Issued:	01/02/2021
Client:	JBS&G Australia Pty Ltd
	Level 1, 50 Margaret Street, Sydney NSW 2000
Contact:	Rohan Hammond
Project Number:	200309.00
Project Name:	Rocla Site - Proposed Development
Project Location:	158-164 Old Bathurst Road, Emu Plains
Work Request:	6764
Sample Number:	WO-6764B
Date Sampled:	18/01/2021
Dates Tested:	20/01/2021 - 28/01/2021
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	103, Depth: 0.3 - 1.5m
Material:	Clayey Sand orange brown

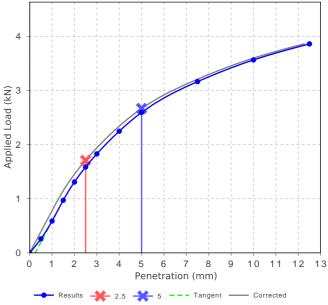
California Bearing Ratio (AS 1289 6	6.1.1 &	2.1.1)	Min	Max
CBR taken at		5 mm		
CBR %		13		
Method of Compactive Effort		Sta	ndard	
Method used to Determine MDD		AS 1289 5	5.1.1 &	2.1.1
Method used to Determine Plasticit	y	Visual A	ssessm	nent
Maximum Dry Density (t/m ³)		1.91		
Optimum Moisture Content (%)		12.5		
Laboratory Density Ratio (%)		100.0		
Laboratory Moisture Ratio (%)		98.5		
Dry Density after Soaking (t/m ³)		1.90		
Field Moisture Content (%)		8.7		
Moisture Content at Placement (%)		12.5		
Moisture Content Top 30mm (%)		16.1		
Moisture Content Rest of Sample (%)	13.0		
Mass Surcharge (kg)		4.5		
Soaking Period (days)		4		
Curing Hours		69.8		_
Swell (%)		0.5		
Oversize Material (mm)		19		
Oversize Material Included		Excluded		
Oversize Material (%)	0			
Atterberg Limit (AS1289 3.1.2 & 3.2	2.1 & 3.3	3.1)	Min	Max
Sample History	0	ven Dried		
Preparation Method	Ory Sieve			
Liquid Limit (%)		21		
Plastic Limit (%)		14		

Plastic Limit (%)	14		
Plasticity Index (%)	7		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	3.5		
Cracking Crumbling Curling	None		

Douglas Partners Geotechnics | Environment | Groundwater

technics I Environment I Groundwater Douglas Partners Pty Ltd Unanderra Laboratory Unit 1/1 Luso Drive Unanderra NSW 2526 Phone: (02) 4271 1836 Fax: (02) 4271 1897

Email: anes.ibricic@douglaspartners.com.au



Accredited for compliance with ISO/IEC 17025 - Testing

fl____

Approved Signatory: Anes Ibricic Laboratory Manager Laboratory Accreditation Number: 828

Report Number:	200309.00-1
Issue Number:	1
Date Issued:	01/02/2021
Client:	JBS&G Australia Pty Ltd
	Level 1, 50 Margaret Street, Sydney NSW 2000
Contact:	Rohan Hammond
Project Number:	200309.00
Project Name:	Rocla Site - Proposed Development
Project Location:	158-164 Old Bathurst Road, Emu Plains
Work Request:	6764
Sample Number:	WO-6764C
Date Sampled:	18/01/2021
Dates Tested:	20/01/2021 - 28/01/2021
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	105, Depth: 0.3 - 0.8m
Material:	Silty Clay; orange brown traces of sand

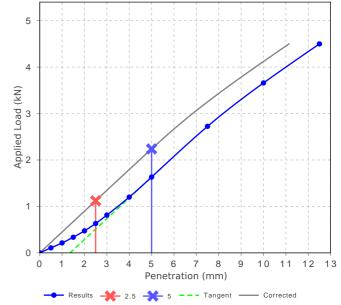
California Bearing Ratio (AS 1289 6	.1.1 & :	2.1.1)	Min	Max
CBR taken at		5 mm		
CBR %		11		
Method of Compactive Effort		Star	ndard	
Method used to Determine MDD		AS 1289 5	.1.1 &	2.1.1
Method used to Determine Plasticity	/	Visual As	ssessm	nent
Maximum Dry Density (t/m ³)		1.95		
Optimum Moisture Content (%)		11.5		
Laboratory Density Ratio (%)		90.5		
Laboratory Moisture Ratio (%)		101.0		
Dry Density after Soaking (t/m ³)		1.77		
Field Moisture Content (%)		8.7		
Moisture Content at Placement (%)		11.7		
Moisture Content Top 30mm (%)	13.0			
Moisture Content Rest of Sample (%	6)	12.5		
Mass Surcharge (kg)		4.5		
Soaking Period (days)		4		
Curing Hours		72		
Swell (%)		0.0		
Oversize Material (mm)		19		
Oversize Material Included		Excluded		
Oversize Material (%)	0			
Atterberg Limit (AS1289 3.1.2 & 3.2	.1 & 3.3	3.1)	Min	Max
Sample History	0	ven Dried		
Preparation Method	Vet Sieve			
Liquid Limit (%)		16		
Plastic Limit (%)		14		

Plastic Limit (%) 14 Plasticity Index (%) 2 Linear Shrinkage (AS1289 3.4.1) Min Max Moisture Condition Determined By AS 1289.3.1.2 Linear Shrinkage (%) Linear Shrinkage (%) 0.5 Cracking Crumbling Curling

Douglas Partners Geotechnics | Environment | Groundwater

technics I Environment I Groundwater Douglas Partners Pty Ltd Unanderra Laboratory Unit 1/1 Luso Drive Unanderra NSW 2526 Phone: (02) 4271 1836 Fax: (02) 4271 1897

Email: anes.ibricic@douglaspartners.com.au



Accredited for compliance with ISO/IEC 17025 - Testing

fl____

Approved Signatory: Anes Ibricic Laboratory Manager Laboratory Accreditation Number: 828

Report Number:	200309.00-1
Issue Number:	1
Date Issued:	01/02/2021
Client:	JBS&G Australia Pty Ltd
	Level 1, 50 Margaret Street, Sydney NSW 2000
Contact:	Rohan Hammond
Project Number:	200309.00
Project Name:	Rocla Site - Proposed Development
Project Location:	158-164 Old Bathurst Road, Emu Plains
Work Request:	6764
Sample Number:	WO-6764D
Date Sampled:	18/01/2021
Dates Tested:	20/01/2021 - 28/01/2021
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	107, Depth: 0.5 - 1.5m
Material:	Sandy Clay; orange brown

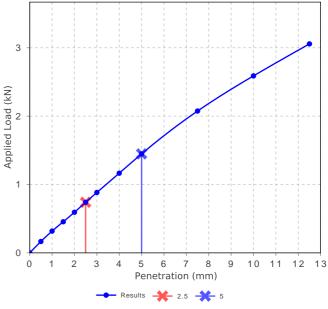
California Bearing Ratio (AS 12896	2.1.1)	Min	Max		
CBR taken at	5 mm				
CBR %		7			
Method of Compactive Effort		Standard			
Method used to Determine MDD		AS 1289 5.1.1 & 2.1.1			
Method used to Determine Plasticity	/	Visual Assessment			
Maximum Dry Density (t/m ³)		1.92			
Optimum Moisture Content (%)		13.0			
Laboratory Density Ratio (%)		99.5			
Laboratory Moisture Ratio (%)		99.0			
Dry Density after Soaking (t/m ³)		1.91			
Field Moisture Content (%)		12.6			
Moisture Content at Placement (%)		12.9			
Moisture Content Top 30mm (%)	14.8				
Moisture Content Rest of Sample (%	13.6				
Mass Surcharge (kg)	4.5				
Soaking Period (days)	4				
Curing Hours	68.8				
Swell (%)		0.0			
Oversize Material (mm)		19			
Oversize Material Included		Excluded			
Oversize Material (%)		0			
Atterberg Limit (AS1289 3.1.2 & 3.2	3.1)	Min	Max		
Sample History	ven Dried				
Preparation Method	ry Sieve				
Liquid Limit (%)	19				
Plastic Limit (%)	12				
Plasticity Index (%)	7				
Linoar Shrinkago (AS1280.3.4.1)			Min	Max	

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	3.5		
Cracking Crumbling Curling	None		

Douglas Partners Geotechnics | Environment | Groundwater

Douglas Partners Pty Ltd Unanderra Laboratory Unit 1/1 Luso Drive Unanderra NSW 2526 Phone: (02) 4271 1836 Fax: (02) 4271 1897

Email: anes.ibricic@douglaspartners.com.au ALL D



Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Anes Ibricic Laboratory Manager Laboratory Accreditation Number: 828

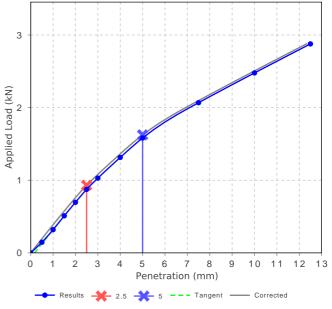
Report Number:	200309.00-1
Issue Number:	1
Date Issued:	01/02/2021
Client:	JBS&G Australia Pty Ltd
	Level 1, 50 Margaret Street, Sydney NSW 2000
Contact:	Rohan Hammond
Project Number:	200309.00
Project Name:	Rocla Site - Proposed Development
Project Location:	158-164 Old Bathurst Road, Emu Plains
Work Request:	6764
Sample Number:	WO-6764E
Date Sampled:	18/01/2021
Dates Tested:	20/01/2021 - 27/01/2021
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	108, Depth: 0.5 - 1.5m
Material:	Silty Clay; orange brown

California Bearing Ratio (AS 1289 6.1.1 & 2	.1.1)	Min	Max
CBR taken at	5 mm		
CBR %	8		
Method of Compactive Effort	Star	ndard	
Method used to Determine MDD	AS 1289 5	.1.1 & 2	.1.1
Method used to Determine Plasticity	Visual As	sessme	ent
Maximum Dry Density (t/m ³)	1.91		
Optimum Moisture Content (%)	12.5		
Laboratory Density Ratio (%)	100.0		
Laboratory Moisture Ratio (%)	98.5		
Dry Density after Soaking (t/m ³)	1.91		
Field Moisture Content (%)	10.4		
Moisture Content at Placement (%)	12.1		
Moisture Content Top 30mm (%)	16.7		
Moisture Content Rest of Sample (%)	14.4		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	68.4		
Swell (%)	0.5		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Douglas Partners Geotechnics | Environment | Groundwater

otechnics I Environment I Groundwater Douglas Partners Pty Ltd Unanderra Laboratory Unit 1/1 Luso Drive Unanderra NSW 2526 Phone: (02) 4271 1836 Fax: (02) 4271 1897

Email: anes.ibricic@douglaspartners.com.au


ALL D

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Anes Ibricic Laboratory Manager Laboratory Accreditation Number: 828

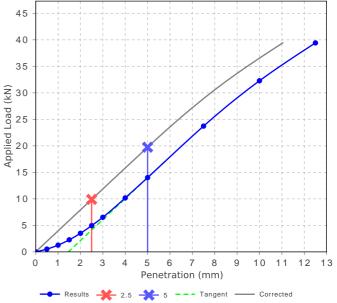
Report Number:	200309.00-1
Issue Number:	1
Date Issued:	01/02/2021
Client:	JBS&G Australia Pty Ltd
	Level 1, 50 Margaret Street, Sydney NSW 2000
Contact:	Rohan Hammond
Project Number:	200309.00
Project Name:	Rocla Site - Proposed Development
Project Location:	158-164 Old Bathurst Road, Emu Plains
Work Request:	6764
Sample Number:	WO-6764F
Date Sampled:	18/01/2021
Dates Tested:	20/01/2021 - 27/01/2021
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	109, Depth: 0.0 - 0.8m
Material:	Fill/roadbase: medium to coarse crushed igneous rock

California Bearing Ratio (AS 1289 6.1.1 & 2	.1.1)	Min	Max
CBR taken at	5 mm		
CBR %	100		
Method of Compactive Effort	Star	ndard	
Method used to Determine MDD	AS 1289 5	.1.1 &	2.1.1
Method used to Determine Plasticity	Visual As	sessm	ient
Maximum Dry Density (t/m ³)	1.91		
Optimum Moisture Content (%)	14.0		
Laboratory Density Ratio (%)	99.5		
Laboratory Moisture Ratio (%)	98.5		
Dry Density after Soaking (t/m ³)	1.91		
Field Moisture Content (%)	12.9		
Moisture Content at Placement (%)	13.8		
Moisture Content Top 30mm (%)	14.1		
Moisture Content Rest of Sample (%)	13.9		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	68		_
Swell (%)	-0.5		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	1.4		

Douglas Partners Geotechnics | Environment | Groundwater

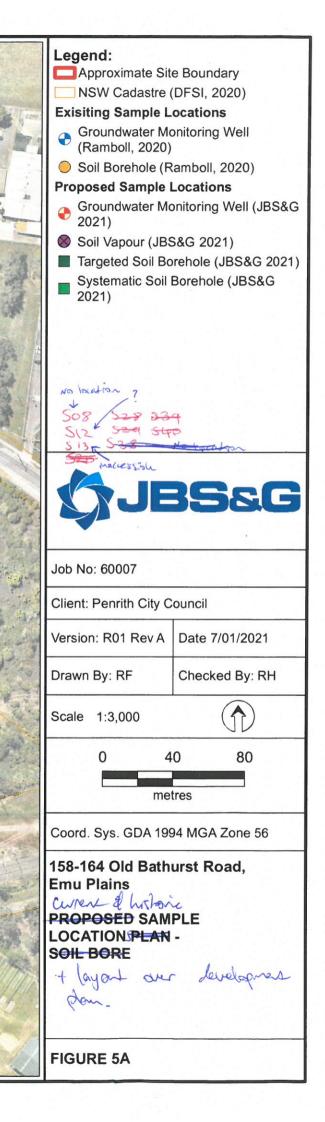
eotechnics I Environment I Groundwater Douglas Partners Pty Ltd Unanderra Laboratory Unit 1/1 Luso Drive Unanderra NSW 2526 Phone: (02) 4271 1836 Fax: (02) 4271 1897

Email: anes.ibricic@douglaspartners.com.au



Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Anes Ibricic Laboratory Manager Laboratory Accreditation Number: 828



Appendix E

Results of Previous Investigations (by others)

File Name: N:\Projects\Penrith City Council\60007 Rocla Site Investigation - Emu Plains\GIS\Maps\R01 Rev A\60007_05A_Sample_Locs_Soil.mxd Reference: NSW DFSI. 2019

PROJECT NUMBER 60007 PROJECT NAME PCC DSI and RAP CLIENT Penrith City Council ADDRESS 158 to 164 Old Bathurst Road, Emu Plains, NSW

DRILLING COMPANY Ken Coles DRILLING DATE 14-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY T Frisken

COMMENTS

Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DIG	Additional Observations
				Fill	FILL - Roadbase, brown-grey, heterogeneous, dry, well graded, very dense, coarse gravels,		<u>\$01_0-0.1</u>		No staining, odours or ACM observed
		0.5	1888 1990	Fill	∖i <mark>nclu</mark> sions of concrete and igneous gravels		S01_0.4-0.5		No staining, odours
		_		CH-MH	FI <mark>LL -</mark> Roadbase, brown, h <mark>eter</mark> ogeneous, dry, well <mark>gra</mark> ded, very dense, <mark>coar</mark> se gravels,				or ACM observed
		1 			kinclusions of igneous gravels, ash and slag Silty CLAY - brown, homogeneous, dry, high plasticity,		- S01_0.9-1.0		or ACM observed
		- 1.5			Termination Depth at: 1.3 m.				
		- 2							
		2.5							
		_							
		- 3							
		- 3.5							
		4							
		_							
		- 4.5							
		_							
		- 5							
		 5.5							
		6							
		_							
		6.5							
		- - 							
		7 							
		- 7.5							
		- 8							
		_							
		- 8.5							
		9							
		_							
		- 9.5							
		_							

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 03 Feb 2021

PROJECT NUMBER 60007 PROJECT NAME PCC DSI and RAP CLIENT Penrith City Council ADDRESS 158 to 164 Old Bathurst Road, Emu Plains, NSW DRILLING COMPANY Ken Coles DRILLING DATE 14-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY T Frisken

COMMENTS Refusal on compacted roadbase with Reo inclusions Lithological Class **Drilling Method** Depth (m bgl) Water (m bgl) Graphic Log Additional Lithological Description Samples Moisture Observations B Fill FILL - Roadbase, brown-grey, heterogeneous, S02_0.0-0.1 No staining, odours dry, well graded, very dense, coarse gravels, or ACM observed inclusions of concrete, igneous gravels and large amount of reinforcment bars Fill S02 0.4-0.5 No staining, odours O F or ACM observed FILL - Roadbase, brown, heterogeneous, dry, well graded, very dense, coarse gravels, 1 inclusions of concrete, igneous gravels and large amount of reinforcment bars - Refusal - 1.5 Termination Depth at: 0.5 m. 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 03 Feb 2021

9

9.5

PROJECT NUMBER 60007 PROJECT NAME PCC DSI and RAP CLIENT Penrith City Council ADDRESS 158 to 164 Old Bathurst Road, Emu Plains, NSW

DRILLING COMPANY Ken Coles DRILLING DATE 14-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY T Frisken

COMMENTS

Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DID	Additional Observations
		-0.5 -1 -1.5 -2.5 -3 -3.5 -4.5 -5.5 -6 -5.5 -6 -6.5 -7 -7.5 -8.5 -8.5 -9 -9.5		Fill CL-ML CL-ML	FILL - Roadbase, brown-grey, heterogeneous, dry, well graded, very dense, coarse gravels, inclusions of concrete, igneous gravels, wire and metal FILL - Lense of extremely dense compacted roadbase Silty CLAY - black, homogeneous, low plasticity, damp, soft Silty CLAY - grey, homogeneous, dry, low plasticity, soft Termination Depth at: 2.0 m.		S03_0-0.1 S03_0.4-0.5 S03_0.6-0.7 S03_0.9-1 S03_1.4-1.5		No staining, odours or ACM observed No staining, odours or ACM observed Slight organic odour, no staining or ACM observed No staining, odours or ACM observed No staining, odours or ACM observed

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 03 Feb 2021

DRILLING COMPANY Ken Coles DRILLING DATE 14-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY T Frisken

COMMENTS Refusal on compacted roadbase with Reo inclusions Lithological Class **Drilling Method** Depth (m bgl) Water (m bgl) **Graphic Log** Additional Lithological Description Samples Moisture Observations B Fill FILL - Roadbase, brown-grey, heterogeneous, S04_0-0.1 No staining, odours dry, well graded, very dense, coarse gravels, or ACM observed inclusions of concrete, igneous gravels and S04 0.4-0.5 No staining, odours 0.5 large amount of reinforcment bars or ACM observed No staining, odours S04_0.9-1 Fill FILL - Roadbase, brown-grey, heterogeneous, or ACM observed damp, well graded, very dense, coarse gravels, inclusions of concrete, igneous gravels and large amount of reinforcment bars - Refusal 1.5 Termination Depth at: 1.0 m. 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 03 Feb 2021

8

8.5

9

9.5

DRILLING COMPANY Ken Coles DRILLING DATE 14-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY T Frisken

COMMENTS

			1	Ŋ					
Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DID	Additional Observations
		_	XXX	Fill /	FILL - Roadbase / light grey clay		S05_0-0.1		No staining, odours
			\bigotimes	Fill	heterogeneous, dry, low plasticity, firm		S05_0.4-0.5		or ACM observed
		- 0.5		CL-ML	well graded, medium dense, coarse gravels,				or ACM observed
					inclusions of igneous gravels		S05_0.9-1		No staining, odours
		1			Silty CLAY - brown, homogeneous, dry, low			-	or ACM observed
		-1 			Silty CLAY - brown, homogeneous, dry, low plasticity, firm Termination Depth at: 1.0 m.				
		- 9.5							

DRILLING COMPANY Ken Coles DRILLING DATE 14-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY T Frisken

COMMENTS TP Elevation Approximately 1.5m above adjacent gs

Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	PID	Additional Observations
			\bigotimes	Fill	RWN - Clayey SAND, brown, hetergeneous, dry		S06_0.0-0.1		No staining, odours
		- 0.5		RWN	to damp, poorly graded, lo <mark>ose</mark> , medium grain size, inclusions of steel bar <mark>s a</mark> nd plastic		S06_0.4-0.5		or ACM observed
		_			RWN - Clayey SAND, brown, hetergeneous, dry to damp, poorly graded, loose, medium grain				or ACM observed
		_ 1			size		S06_0.9-1		or ACM observed
		_	//////////////////////////////////////	SC	Clayey SAND - brown, hetergeneous, dry to				
		_ 1.5	//.		damp, poorly graded, loose, medium grain size				
		_							
					Termination Depth at: 2. <mark>0 m.</mark>				
		- 2.5 -							
		_ 3							
		_							
		- 3.5							
		_							
		- 4							
		_							
		- 4.5							
		- 5							
		_ 5.5							
		_							
		- 6							
		_							
		6.5							
		7 							
		_ 7.5							
		_ 1.5							
		- 8							
		- 8.5							
		- 9							
		- 9.5 -							
		_							

DRILLING COMPANY Ken Coles DRILLING DATE 14-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY T Frisken

COMMENTS

						1	Γ		
Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DID	Additional Observations
		_	XXX	Fill	FILL - Roadbase, brown-grey, heterogeneous,				No staining, odours
			\bigotimes	Fill	dry, well graded, very dense, coarse gravels, inclusions of concrete and igneous gravels		S07_0.4-0.5		or ACM observed
		0.5 0.5 1 1.5 2.5 3.5 4 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5			FILL - Roadbase, brown, heterogeneous, dry, well graded, very dense, coarse gravels, inclusions of concrete, igneous gravels and large amount of reinforcment bars - Refusal Termination Depth at: 0.5 m.				No staining, odours

PROJECT NUMBER 60007

PROJECT NAME PCC DSI and RAP CLIENT Penrith City Council ADDRESS 158 to 164 Old Bathurst Roa Plains, NSW			y Counci	1	d, Emu DRILLING DATE 14-Jan-21 DRILL RIG d, Emu DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m	NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY T Frisken				
СОММЕ	ENTS	TP El	evation A	Approximatel	y 3.5m above adjacent gsRefusal on compacted road	dbase	with Reo inclusions			
Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DIA	Additional Observations	
		- 0.5 - 1 - 1.5		Fill Fill Fill	FILL - Light yellow (sandstone), heterogeneous, dry, medium dense, cobbles to coarse sand, geofab liner at base FILL - Clayey SAND, brown, heterogeneous, coarse to medium grained sand, horizontal steel bars at 0.5mbgs FILL - Clayey SAND, brown, heterogeneous, coarse to medium grained sand, horizontal steel bars at 0.5mbgs FILL - Clayey SAND, brown, heterogeneous, coarse to medium grained sand, horizontal steel bars at 0.5mbgs and large amount of concrete and steel inclusions - Refusal		\$09_0-0.1 \$09_0.4-0.5 \$09_0.9-1.0 \$09_1.4-1.5		No staining, odours or ACM observed No staining, odours or ACM observed No staining, odours or ACM observed No staining, odours or ACM observed	
		2 2.5 3 3.5 4 4.5 5.5 6 6 6.5 7 7.5 8 8.5 9 9.5			Termination Depth at: 1.8 m.					

DRILLING COMPANY Ken Coles

EASTING N/A

COMMENTS Refusal on compacted roadbase with Reo inclusions

PROJECT NUMBER 60007 PROJECT NAME PCC DSI and RAP CLIENT Penrith City Council ADDRESS 158 to 164 Old Bathurst Road, Emu Plains, NSW DRILLING COMPANY Ken Coles DRILLING DATE 14-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY T Frisken

Lithological Class **Drilling Method** Water (m bgl) Depth (m bgl) **Graphic Log** Additional Lithological Description Samples Moisture Observations B ^JNo staining, odours \Fill FILL - CLAY, light grey, dry, homogeneous S10_0.1-0.2 or ACM observed Fill FILL - Sandy CLAY, light brown, S10_0.2-0.3 Fill heterogeneous, dry, low plasticity, firm, No staining, odours - 0.5 or ACM observed inclusions of concrete and gravel FILL - Sandy CLAY, dark brown, heterogeneous, dry, coarse sand, medium 1 dense Termination Depth at: 0.4 m. - 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

PROJECT NUMBER 60007 DRILLING COMPANY Ken Coles EASTING N/A PROJECT NAME PCC DSI and RAP DRILLING DATE 14-Jan-21 NORTHING N/A CLIENT Penrith City Council DRILL RIG COORD SYS N/A ADDRESS 158 to 164 Old Bathurst Road, Emu DRILLING METHOD Test Pit **COORD SOURCE** Map Approximation Plains, NSW DIMENSIONS 2 x 0.5 m LOGGED BY T Frisken COMMENTS Refusal on large concrete conduit Lithological Class **Drilling Method** Depth (m bgl) Water (m bgl) Graphic Log Additional **Lithological Description** Samples Moisture Observations B \bigotimes Fill FILL - Roadbase, light brown, S11_0-0.1 No staining, odours or ACM observed Fill FILL - Roadbase, dark brown, heterogeneous, S11 0.4-0.5 dry, well graded, very dense, coarse gravels, No staining or A F odours, ACM inclusions of concrete, igneous gravels and large amount of reinforcment bars - Refusal fragment observed Termination Depth at: 0.5 m. - 1 - 1.5 2

- 2.5				
-3				
- 4				
- 5				
- 5.5				
6				
- 6.5				
- 7				
- 7.5				
8				
- 8.5				
9				
- 9.5 				
	tondad for an dire			Dama 4 - f 4
	at.net on 03 Feb	nmental not geotechnical purposes. 2021		Page 1 of 1

COMMENTS Refusal on reinforced concrete

DRILLING COMPANY Ken Coles DRILLING DATE 14-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY T Frisken

							1	1	
Drilling Method	Water (m bgl)	Depth (m bgl)	. Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	PID	Additional Observations
		_	· ^ · ·		FILL - Concrete - Refusal				
		0.5 1 1.5 2 2.5 3 3.5 4 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5			Termination Depth at: 0.1 m.				

PROJECT NUMBER 60007 PROJECT NAME PCC DSI and RAP CLIENT Penrith City Council ADDRESS 158 to 164 Old Bathurst Road, Emu Plains, NSW					DRILLING COMPANY Teratest DRILLING DATE 18-Jan-21 DRILL RIG Id, Emu DRILLING METHOD Push Tube / Solid DIAMETER 125 mm	DRILLING DATE 18-Jan-21 NORTHING N/A DRILL RIG COORD SYS N/A DRILLING METHOD Push Tube / Solid Flight Aug COORD SOURCE Map Approximation				
OMMI	ENTS									
Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DIA	Additional Observations	
		0.5 1 1.5		Fill Fill CH CH	FILL - CLAY, brown black, heterogeneous, dry, high plasticity, soft, inclusions of grass roots and gravels FILL - CLAY, brown, heterogeneous, dry, high plasticity, soft FILL - Gravelly CLAY, brown, heterogeneous, dry, high plasticity, soft FILL - Gravelly CLAY, brown, heterogeneous, dry, high plasticity, soft, inclusions of grass roots CLAY - dark brown, heterogeneous, dry, high plasticity, firm CLAY - brown, heterogeneous, dry, high plasticity, firm		\S14_0-0.1 \S14_0.2-0.3 \S14_0.4-0.5 /S14_0.9-1 /S14_1.4-1.5		No staining, odours or ACM observed No staining, odours or ACM observed No staining, odours or ACM observed No staining, odours or ACM observed No staining, odours	
		-2.5 -2.5 -3 -3.5 -4.5 -5.5 -5.5 -6.5 -7.5 -7.5 -7.5 -7.5 -8.5 -7.5 -8.5 -9.5			Termination Depth at: 2.0 m.					

CLIENT Penr ADDRESS 1 Plains, NSW	ith City Cou	SI and RAP	DRILLING COMPANY Teratest DRILLING DATE 18-Jan-21 DRILL RIG d, Emu DRILLING METHOD Push Tube / Solid DIAMETER 125 mm	DRILLING DATE 18-Jan-21 NORTHING N/A DRILL RIG COORD SYS N/A DRILLING METHOD Push Tube / Solid Flight Aug COORD SOURCE Map Approximation				
COMMENTS	Refusal on	compacted road	lbase with Reo inclusions					
Drilling Method Water (m bgl)	Depth (m bgl) Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	PID	Additional Observations	
	-0.5 -1 -1.5 -2 -2.5 -3 -3.5 -4 -4.5 -5 -5.5 -6 -6.5 -7 -7.5	Fill	FILL - Gravelly CLAY, dark brown, grey, heterogenous,dry, high plasticity, firm, inclusions of medium sized gravels FILL - Gravelly CLAY, dark brown, grey, heterogenous,dry, high plasticity, firm, inclusions of medium sized gravels - Refusal Termination Depth at: 0.7 m.		<u>S15_0-0.1</u> <u><u>S15_0.4-0.5</u></u>		No staining, odours or ACM observed No staining, odours or ACM observed	

PROJE CLIEN [®] ADDRE	PROJECT NUMBER 60007 PROJECT NAME PCC DSI and RAP CLIENT Penrith City Council ADDRESS 158 to 164 Old Bathurst Road, Emu Plains, NSW					DRILLING COMPANY Teratest EASTING N/A DRILLING DATE 18-Jan-21 NORTHING N/A DRILL RIG COORD SYS N/A u DRILLING METHOD Push Tube / Solid Flight Aug COORD SOURCE Map Approximation DIAMETER 125 mm LOGGED BY J Zeng				
сомм	ENTS	Refus	al on co	mpacted road	dbase with F	Reo inclusions				
Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class		Lithological Description	Moisture	Samples	DIA	Additional Observations
	>	-		Fill	FILL - GI	RAVEL, grey, heterogeneous, dry, well	2		-	No staining, odours ا
		_	ĬŇ	Fill	graded, r	medium grained, dense, inclusions	/	S16_0.2-0.3	1	or ACM observed
		- 0.5	XX	Fill	Fill - Ci	ayey GRAVEL, gr <mark>ey b</mark> rown, dry, well	/	<u>S16_0.4-0.5</u>		No staining, odours or ACM observed
		-		>		medium grained, <mark>den</mark> se ayey GRAVE <mark>L, grey</mark> brown, dry, poorly	/			No staining, odours
						ayey GRAVEL, grey brown, dry, poorly medium grained, dense - Refusal	/			or ACM observed
		-			Terminati	ion Depth at: 1.0 m.				
		- 1.5 -								
		-2								
		- 2.5								
		- 3								
		_								
		- 3.5								
		_								
		-4								
		_								
		- 4.5								
		_								
		- 5								
		_								
		- 5.5								
		_								
		6	1							
		E	1							
		6.5	1							
			1							
		- 7	1							
		_								
		- 7.5	1							
		_	1							
		- 8								
		É.	1							
		- 8.5	1							
			1							
		- 9								
			1							
		- 9.5 -	1							

CLIENT	CTN Pen SS NSW	AME P rith City I58 to 1	CC DSI / Counci	and RAP	DRILLING COMPANY Teratest DRILLING DATE 18-Jan-21 DRILL RIG , Emu DRILLING METHOD Push Tube / Solid F DIAMETER 125 mm	DRILLING DATE 18-Jan-21 NORTHING N/A DRILL RIG COORD SYS N/A u DRILLING METHOD Push Tube / Solid Flight Aug COORD SOURCE Map Approximation				
Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DIG	Additional Observations	
				Fill CH	FILL - Gravelly CLAY, dark brown, grey, heterogenous,dry, high plasticity, firm, inclusions of medium sized gravels CLAY - brown, heterogeneous, dry, high plasticity, soft	-	\S17_0-0.1 /S17_0.4-0.5 /S17_0.9-1		No staining, odours or ACM observed No staining, odours or ACM observed No staining, odours	
		$ \begin{array}{c} 1 \\ - 1.5 \\ - 2 \\ - 2.5 \\ - 3 \\ - 3.5 \\ - 4 \\ - 4.5 \\ - 5 \\ - 5.5 \\ - 6 \\ - 6.5 \\ - 7 \\ - 7.5 \\ - 8 \\ - 8.5 \\ - 9 \\ - 9.5 \\ - 9 \\ - 9.5 \\ - 9 \\ - 9.5 \\ - 9.5 \\ $			Termination Depth at: 1.0 m.				or ACM observed	

PROJECT NUMBER 60007DRILLINPROJECT NAME PCC DSI and RAPDRILLINCLIENT Penrith City CouncilDRILLINADDRESS 158 to 164 Old Bathurst Road, EmuDRILLINPlains, NSWDIMENS

COMMENTS Refusal on reinforced concrete

DRILLING COMPANY Ken Coles DRILLING DATE 14-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY T Frisken

Drilling Method	Water (m bgl)	Depth (m bgl)	- - - - - - - - - - - - -	Lithological Class	Lithological Description	Moisture	Samples	DIA	Additional Observations
		 0.5		Concrete _	FILL - Concrete - Refusal				
		- - 							
		- 1.5 - - - 2							
		2.5							
		- 3.5 - - - - - 4							
		- 4.5 							
		5 							
		- 6							
		- 6.5 - - - 7							
		- 8.5 - - - 9							
		- - 9.5							
		_			nmental net gestechnical numeroe				Daga 1 of 1

PROJECT NUMBER 60007 **DRILLING COMPANY** Teratest EASTING N/A PROJECT NAME PCC DSI and RAP DRILLING DATE 18-Jan-21 NORTHING N/A **CLIENT** Penrith City Council DRILL RIG COORD SYS N/A ADDRESS 158 to 164 Old Bathurst Road, Emu DRILLING METHOD Push Tube / Solid Flight Aug COORD SOURCE Map Approximation Plains, NSW DIAMETER 125 mm LOGGED BY J Zeng COMMENTS Lithological Class **Drilling Method** Depth (m bgl) Nater (m bgl) **Graphic Log** Additional Lithological Description Samples Moisture Observations B Fill FILL - GRAVEL, grey, heterogeneous, dry, well S19_0-0.1 No staining, odours \graded, medium grained, d<mark>en</mark>se, angular or ACM observed Fill S19_0.2-0.3 FILL - Gravelly CLAY, grey, light brown, No staining, odours S19_0.4-0.5 0.5 or ACM observed CH-SC heterogeneous, dry, high plasticity, firm, inclusions of small to medium gravels No staining, odours S19_0.9-1 Sandy CLAY - brown grey, heterogeneous, dry, or ACM observed 1 CH-MH high plasticity, firm No staining, odours CLAY - brown, heterogeneous, dry, high or ACM observed S19_1.4-1.5 plasticity, firm No staining, odours or ACM observed Termination Depth at: 1.5 m. 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

CLIENT	CTN Pen SS NSW	AME P rith City 158 to 1	CC DSI / Counci	and RAP	DRILLING COMPANY Teratest DRILLING DATE 18-Jan-21 DRILL RIG d, Emu DRILLING METHOD Push Tube / Solid R DIAMETER 125 mm	Flight A	EASTING N/A NORTHING N/A COORD SYS N/A Aug COORD SOURCE M LOGGED BY J Zeng		pproximation
Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DIA	Additional Observations
		0.5 1.5 2.5 3.5 4 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5		Fill	FILL - Gravelly CLAY, brown, heterogeneous, dry, high plasticity, firm, inclusions of grey gravels CLAY - brown, heterogeneous, dry, high plasticity, firm Termination Depth at: 1.0 m.		\S20_0.0.1 / \S20_0.2-0.3 / \S20_0.4-0.5 / \S20_0.9-1 /		No staining, odours or ACM observed No staining, odours or ACM observed No staining, odours or ACM observed No staining, odours or ACM observed

PROJECT NUMBER 60007

EASTING N/A **DRILLING COMPANY** Teratest PROJECT NAME PCC DSI and RAP DRILLING DATE 18-Jan-21 NORTHING N/A **CLIENT** Penrith City Council DRILL RIG COORD SYS N/A ADDRESS 158 to 164 Old Bathurst Road, Emu DRILLING METHOD Push Tube / Solid Flight Aug COORD SOURCE Map Approximation Plains, NSW DIAMETER 125 mm LOGGED BY J Zeng COMMENTS Lithological Class **Drilling Method** Water (m bgl) Depth (m bgl) **Graphic Log** Additional Lithological Description Samples Moisture Observations B Fill FILL - GRAVEL, grey, heterogeneous, dry, well S21_0-0.1 No staining, odours \graded, medium grained, d<mark>en</mark>se, angular or ACM observed Fill S21 0.4-0.5 FILL - Gravelly CLAY, grey, light brown, No staining, odours 0.5 СН he<mark>tero</mark>geneous, dry, high plasticity, firm or ACM observed CLAY - brown, heterogeneous, dry, high /No staining, odours S21_0.9-1.0 or ACM observed plasticity, firm Termination Depth at: 1.0 m. 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

DRILLING COMPANY Ken Coles DRILLING DATE 15-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY J Zeng

COMMENTS

Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	ald	Additional Observations
		-	XXX		FILL - Concrete		S22_0.1-0.2	ر _{0.6}	No staining, odours
		 0.5	\bigotimes	Fill	FI <mark>LL - Gravelly</mark> CLAY, brow <mark>n,</mark> heterogeneous, d <mark>ry, m</mark> edium plasticity, firm		S22_0.5-0.6	∕ <u>0.8</u> ∖	or ACM observed
				СН	CLAY, brown, heterogeneous, dry, high		322_0.3-0.0	0.0	∖or ACM observed /
		_ 			plasticity, firm		S22_0.9-1	0.4	No staining, odours
		-1.5 -2.5 -3.3.5 -4.5 -5.5 -6.5 -6.5 -7.5 -7.5 -8.5 -8.5 -9.5			Termination Depth at: 1.0 m.				

DRILLING COMPANY Ken Coles DRILLING DATE 13-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY E Piccinin

COMMENTS

Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DIA	Additional Observations
	ĺ		XXX	Fill	FILL - Compressed Roadbase	-	S23_0.1-0.2		No staining, odours
		- 0.5	XXX	Fill	FILL - Gravelly SAND, brown heterogeneous, damp, medium grained sand and gravel, well		S23_0.4-0.5		or ACM observed
		- 0.5			gr <mark>ade</mark> d, angular gravels		S23_0.7-0.8		or ACM observed
		_ _ 1			FILL - Clayey Gravelly SAND, orange brown: heterogeneous, damp, medium grained sand				No staining, odours
		- '			and gravel, well graded, angular gravel with				
		_ 1.5			inclusions of ash CLAY - orange brown, homogeneous, damp,				
		_			hard, dense, non plastic to low plasticity				
		- 2			Termination Depth at: 1.0 m.				
		_							
		- 2.5							
		_							
		- 3							
		_							
		- 3.5							
		_							
		- 4							
		- 4.5 -							
		_ 							
		- 5 -							
		 5.5							
		- 6							
		_							
		6.5							
		_							
		- 7							
		- 7.5							
		_							
		- 8							
		_							
		- 8.5							
		_							
		9 							
		- 9.5 -							
		_							

DRILLING COMPANY Ken Coles DRILLING DATE 13-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY E Piccinin

COMMENTS

Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DIA	Additional Observations
	1	_	XXX	Fill	FILL - Compressed roadbase		S24_0.0-0.1		No staining, odours 🏾
				Fill	FILL - Sandy GRAVEL, brown, heterogeneous, damp, fine to medium gravels and medium		S24_0.2-0.3		or ACM observed No staining, odours
		- 0.5		CL	sa <mark>nds</mark> , well graded, sub-an <mark>gul</mark> ar gravels		<u>S24_0.4-0.5</u>		or ACM observed
		 1	<i>\/////</i>		CL <mark>AY -</mark> orange brown, heterogeneous, damp, soft to firm, low plasticity				No staining, odours or ACM observed
		-			Termination Depth at: 0.8 m.				or Activi observed
		- 1.5							
		- 2							
		_							
		2.5							
		_							
		- 3							
		_							
		- 3.5							
		_							
		- 4							
		_							
		- 4.5							
		_ 							
		- 5							
		- 6							
		_							
		6.5							
		_							
		7							
		- 7.5							
		_							
		- 8							
		- 8.5 -							
		_ 9							
		_							

PROJECT NUMBER 60007 EASTING N/A **DRILLING COMPANY** Teratest PROJECT NAME PCC DSI and RAP DRILLING DATE 18-Jan-21 NORTHING N/A **CLIENT** Penrith City Council DRILL RIG COORD SYS N/A ADDRESS 158 to 164 Old Bathurst Road, Emu DRILLING METHOD Push Tube / Solid Flight Aug COORD SOURCE Map Approximation Plains, NSW DIAMETER 125 mm LOGGED BY J Zeng COMMENTS Lithological Class **Drilling Method** Depth (m bgl) Water (m bgl) **Graphic Log** Additional Lithological Description Samples Moisture Observations B Fill FILL - GRAVEL, grey, heterogeneous, dry, well S25_0-0.1 No staining, odours \graded, medium grained, d<mark>en</mark>se, angular or ACM observed Fill S25 0.4-0.5 FILL - Gravelly CLAY, brown black, No staining, odours 0.5 СН or ACM observed heterogeneouos, dry, high plasticity, firm, inclusions of gravels No staining, odours S25_0.9-1 CLAY - light brown, dry, high plasticity, firm or ACM observed 1 СН CLAY - brown, dry, high plasticity, firm Termination Depth at: 1.5 m. 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

DRILLING COMPANY Ken Coles DRILLING DATE 14-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY T Frisken

COMMENTS

Boy Nulling Image: Set of the set of

PROJEC CLIENT ADDRE Plains, N	PROJECT NUMBER 60007 DRILLING COMPANY Teratest EASTING N/A PROJECT NAME PCC DSI and RAP DRILLING DATE 18-Jan-21 NORTHING N/A CLIENT Penrith City Council DRILL RIG COORD SYS N/A ADDRESS 158 to 164 Old Bathurst Road, Emu Plains, NSW DRILLING METHOD Push Tube / Solid Flight Au DIAMETER 125 mm COORD SOURCE Map Approximation LOGGED BY J Zeng												
Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DIA	Additional Observations				
		- 0.5		Fill Fill	FILL - GRAVEL, grey, heterogeneous, dry, well graded, medium grained, dense FILL - GRAVEL, grey, heterogeneous, dry, well graded, medium grained, dense - Refusal Termination Depth at: 0.8 m.		\\$27_0-0.1 / /\$27_0.4-0.5		No staining, odours or ACM observed No staining, odours or ACM observed				
		1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5			Termination Depth at: 0.8 m.								
		- 7.5											

PROJECT NUMBER 60007 PROJECT NAME PCC DSI and RAP CLIENT Penrith City Council ADDRESS 158 to 164 Old Bathurst Road, Emu					Emu	DRILLING COMPANY Teratest DRILLING DATE 18-Jan-21 DRILL RIG DRILLING METHOD Push Tube / Solid Flight Au		EASTING N/A NORTHING N/A COORD SYS N/A			
Plains, NSW					, Emu	DIAMETER 125 mm LOGGED BY J Zeng				proximation	
СОММ	ENTS	5									
Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class		Lithological Description	Moisture	Samples	DIA	Additional Observations	

ā	2	ă	Ū			Ś		₫	
		-	\times	Fill	FILL - GRAVEL, crushed concrete, grey, dry,		\S28_0-0.1 /		No staining, odours
		_	\mathbb{X}		heterogeneous, well graded, coarse grained,		S28_0.2-0.3		or ACM observed
			KXX		dense		S28_0.4-0.5		No staining, odours
		- 0.5	\times	Fill	FILL - Gravelly CLAY, brown, heterogeneous,		<u></u>		or ACM observed
		_	KXX		dry, <mark>low</mark> plasticity, firm, inclusions of gravels				No staining, odours
		- 1	\otimes				S28_0.9-1.0		or ACM observed
		- '		СН	CLAY - brown, heterogeneous, dry, high				No staining, odours
		_]	plasticity, firm, inclusions of trace tiny gravels				or ACM observed
		- 1.5					S28_1.4-1.5		No staining, odours
		_ 1.0		СН	CLAY - brown, heterogeneous, dry, high				or ACM observed
		_			plasticity, firm				No staining, odours
			<i>[]]]]</i>	1			S28_1.9-2		or ACM observed /
		_			Termination Depth at: 2.0 m.				
		_							
		- 2.5							
		_							
		_							
		- 3							
		-							
		_							
		- 3.5							
		_							
		_ 4							
		_							
		- 4.5							
		- 4.0							
		_							
		- 5							
		_							
		_							
		_ _ 5.5							
		_							
		_							
		- 6							
		_							
		-							
		- 6.5							
		_							
		- 7							
		7							
		_							
		- 7.5							
		- 1.5							
		_							
		- 8							
		_							
		_							
		- 8.5							
		_							
		_							
		- 9							
		_							
		-							
		- 9.5							
		_							
		_							
Disalah		This law	Io inton	dad fan anvina	nmental not geotechnical purposes		•		Page 1 of 1

PROJECT NUMBER 60007 EASTING N/A **DRILLING COMPANY** Teratest PROJECT NAME PCC DSI and RAP DRILLING DATE 18-Jan-21 NORTHING N/A **CLIENT** Penrith City Council DRILL RIG COORD SYS N/A ADDRESS 158 to 164 Old Bathurst Road, Emu DRILLING METHOD Push Tube / Solid Flight Aug COORD SOURCE Map Approximation Plains, NSW DIAMETER 125 mm LOGGED BY J Zeng COMMENTS Lithological Class **Drilling Method** Depth (m bgl) Nater (m bgl) **Graphic Log** Additional Lithological Description Samples Moisture Observations B /No staining, odours Concrete Concrete S29_0.13-0.23 \or ACM observed FILL - Gravelly CLAY, brown grey, Fill S29_0.33-0.43 h<mark>eter</mark>ogeneous,dry, low pla<mark>stic</mark>ity, firm No staining, odours CH 0.5 S29_0.53-0.63 or ACM observed CLAY, dark brown, heterogeneous, dry, high СН plasticity, firm No staining, odours or ACM observed CLAY, brown, heterogeneous, dry, high 1 S29_1.12-1.13 plasticity, firm No staining, odours or ACM observed Termination Depth at: 1.1 m. 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

COMMENTS TP Elevation Approximately 2.5m above adjacent gs

PROJECT NUMBER 60007 PROJECT NAME PCC DSI and RAP CLIENT Penrith City Council ADDRESS 158 to 164 Old Bathurst Road, Emu Plains, NSW

DRILLING COMPANY Ken Coles DRILLING DATE 14-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY T Frisken

Urilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DIA	Additional Observations
		-	\bigotimes	<u>∖</u> Fill	FILL - Roadbase, light grey, densely graded		<u>\$30_0.0-0.1</u>		No staining, odours
	-		\bigotimes	Fill	base, igneous gravels and inclusions of ash/asphalt		S30_0.4-0.5		or ACM observed
		- 0.5	\bigotimes		FILL - Clayey SAND, brown, heterogeneous,				or ACM observed
	-	- 1	\boxtimes		dry, medium dense, fine grained sand, well graded, inclusions of concrete, igneous gravels,		/S30_0.9-1		/No staining, odou or ACM observed
		-	\bigotimes		sandstone gravels and scrap metal				No staining or
	-	 1.5	\bigotimes		/FILL - Clayey SAND, brown, heterogeneous,		S30_1.4-1.5		odours, ACM
		- 1.5 - -	\bigotimes	Fill	dry, medium dense, fine grained sand, well				
	-		\bigotimes		graded, inclusions of concrete, igneous gravels, sandstone gravels, scrap metal and clay clasts		/S30_1.9-2.0		No staining, odou or ACM observed
		- 2	ĬXX	Fill	FILL - Sandy CLAY, brown, heterogeneous,	1			
	-	-	\bigotimes		damp, low plasticity, soft, inclusions of ash		S30_2.4-2.5		No staining, odou or ACM observed
		- 2.5	\bigotimes						
	-	-	\boxtimes				/ _{S30_2.9-3}		No staining, odou or ACM observed
		- 3	\boxtimes						No staining, odou
				СН	Sandy CLAY:brown heterogeneous, damp, high				or ACM observed
_		- 3.5	[////		plasticity, soft, inclusions of ash Termination Depth at: 3.6 m.		S30_3.5-3.6		or ACM observed
	-	-			Termination Deptinat. 0.0 m.				
		- 4							
	-	-							
		- 4.5							
	-	-							
		- 5							
	-	-							
		- 5.5							
	-	-							
		- 6							
	-	-							
		- 6.5							
	-								
		- 7							
		-							
		- 7.5 -							
		_							
		- 8							
		- 8.5							
		_							
		- 9							
		-							
		9.5							
		_							1

DRILLING COMPANY Ken Coles DRILLING DATE 13-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY E Piccinin

COMMENTS

Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DID	Additional Observations
Drill	Wate	0.5 1 1.5 2 2.5 3 3.5 4 4.5 5	Graf	util E E E SC	FILL - Compressed Roadbase FILL - Sandy GRAVEL, yellow brown, heterogeneous, damp, fine to medium grained gravel, medium grained sand, well graded, angular gravels FILL - Clayey Gravelly SAND, brown, heterogeneous, damp, fine to medium grained gravel and fine sand, well graded, sub-angular gravels Clayey SAND - orange, heterogeneous, damp, medium dense, soft to firm, fine grained Termination Depth at: 2.2 m.	Mois	S31_0.0-0.1 S31_0.1-0.2 S31_0.4-0.5 S31_0.7-0.8		No staining, odours or ACM observed No staining, odours or ACM observed No staining, odours or ACM observed
		5.5 6 6.5 7 7.5 8 8.5 9 9.5							

DRILLING COMPANY Ken Coles DRILLING DATE 14-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY T Frisken

COMMENTS

Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DIG	Additional Observations
		-0.5 -1 -1.5 -2 -2.5 -3.5 -4.5 -5.5 -6.5 -6.5 -7.5 -7.5 -8.5 -8.5 -9 -9.5		Fill CH CH	FILL - Roadbase, grey, heterogeneous, dry, well graded, coarse gravels, inclusions ofconcrete, reinforcment bars, rags CLAY - dark brown to grey, homogeneous, high plasticity, dry, firm Termination Depth at: 1.5 m.		S32_0.0-0.1 S32_0.4-0.5 S32_0.8-0.9 S32_1-1.1		No staining, odours or ACM observed

PROJECT NUMBER 60007 EASTING N/A DRILLING COMPANY Ken Coles PROJECT NAME PCC DSI and RAP DRILLING DATE 13-Jan-21 NORTHING N/A **CLIENT** Penrith City Council DRILL RIG COORD SYS N/A ADDRESS 158 to 164 Old Bathurst Road, Emu DRILLING METHOD Test Pit **COORD SOURCE** Map Approximation Plains, NSW DIMENSIONS 2 x 0.5 m LOGGED BY E Piccinin COMMENTS Lithological Class **Drilling Method** Water (m bgl) Depth (m bgl) **Graphic Log** Additional Lithological Description Samples Moisture Observations B /No staining, odours Asphalt Asphalt S33_0.2-0.3 or ACM observed Concrete Concrete \Fill FILL - Gravelly SAND, brown, heterogeneous, 0.5 No staining, odours CL-SC da<mark>mp</mark>, fine to medium grav<mark>els,</mark> medium sands, S33_0.7-0.8 or ACM observed sub-angular gravels, well graded Sandy CLAY - orange brown, heterogeneous, damp, soft to firm, low plasticity Termination Depth at: 1.0 m. 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 03 Feb 2021

7.5

8

8.5

9

9.5

DRILLING COMPANY Ken Coles DRILLING DATE 13-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY E Piccinin

COMMENTS

Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DID	Additional Observations
		_	XXX	Fill /	FILL - Compressed Roadbase with inclusions of		S34_0.0-0.1		No staining, odours
				Fill	concrete FILL - Sandy GRAVEL, yell <mark>ow,</mark> heterogeneous,	1	<u>\$34_0.2-0.3</u>		or ACM observed
		- 0.5		CL-SC	damp, fine to medium grained gravel, medium		S34_0.7-0.8		or ACM observed
		- ,	<i>\/////</i>		grained sand, sub-angular gravels with inclusions of clay clasts		334_0.7-0.8		No staining, odours or ACM observed
		- 1 -			Sandy CLAY - orange brown, heterogeneous,				
		-			damp, soft to firm, low plasticity				
		- 1.5 -			Termination Depth at: 0.8 m.				
		-							
		- 2							
		- 2.5							
		- 2.5 - -							
		- 3							
		- 3							
		- 0.0							
		_ 4							
		- 4							
		4.5							
		- -							
		_							
		- 5.5							
		-							
		- 6							
		_							
		- 6.5							
		_							
		- 7							
		-							
		_ 7.5							
		_							
		- 8							
		-							
		- 8.5							
		_							
		- 9							
		_							
		9.5							
		_							
		_							

CLIENT	CTN Per SS	AME For the AME of the AME of the American Ameri	CC DSI / Counci	and RAP	DRILLING COMPANY Teratest DRILLING DATE 18-Jan-21 DRILL RIG I, Emu DRILLING METHOD Push Tube / Solid F DIAMETER 125 mm	DRILLING DATE 18-Jan-21 NORTHING N/A DRILL RIG COORD SYS N/A DRILLING METHOD Push Tube / Solid Flight Aug COORD SOURCE Map Approximation				
СОММІ	ENTS	;								
Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DIA	Additional Observations	
		- - - - - - - - - - - - - - - - - - -		Concrete CH CH	Concrete CLAY - brown black, heterogeneous, dry, high plasticity, firm CLAY - brown, heterogeneous, dry, high plasticity, firm	-	✓ <u>S35_</u> 0.61-0.71 ✓ <u>S35_</u> 1.11-1.21		No staining, odours or ACM observed No staining, odours or ACM observed	
		-1.5 2 2.5 3 3.5 4 4.5 5.5 6 -6.5 -7 7.5 8 8.5 9 9.5			Termination Depth at: 1.2 m.					

DRILLING COMPANY Ken Coles DRILLING DATE 13-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY E Piccinin

COMMENTS

				1	1		1		
Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	PID	Additional Observations
		_	1888 1888	Fill	FILL - Compressed raodbase with inclusions of		S36_0.0-0.1		No staining, odours or ACM observed
		- 0.5		Fill/ CL-SC	FILL - Sandy GRAVEL, yellow, heterogeneous,		<u>\$36_0.2-0.3</u>		No staining, odours
		_			da <mark>mp</mark> , fine to medium grain <mark>ed</mark> gravel, medium grai <mark>ned</mark> sand, sub-angula <mark>r gra</mark> vels, well graded		S36_0.7-0.8		or ACM observed
		1			with inclusions of sandstone gravels and clay clasts				or ACM observed
		- - 			Sandy CLAY - orange brown, heterogeneous, damp, soft to firm, low plasticity				
		- 1.5 -			Termination Depth at: 0.8 m.				
		- 2							
		_							
		2.5							
		- 3							
		- 3							
		- 3.5							
		- 4							
		 4.5							
		- 4.5							
		- 5							
		_							
		- 5.5							
		6							
		6.5							
		- 7							
		- 7.5							
		- 8							
		-							
		- 8.5							
		- 9							
		_							
		9.5							
		-							
	1		1						

PROJE CLIENT ADDRE Plains,	PROJECT NUMBER 60007 DRILLING COMPANY Teratest EASTING N/A PROJECT NAME PCC DSI and RAP DRILLING DATE 18-Jan-21 NORTHING N/A CLIENT Penrith City Council DRILL RIG COORD SYS N/A ADDRESS 158 to 164 Old Bathurst Road, Emu DRILLING METHOD Push Tube / Solid Flight Aug COORD SOURCE Map Approximation Plains, NSW DIAMETER 125 mm LOGGED BY J Zeng										
COMMI	ENTS										
Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DIA	Additional Observations		
		- 0.5		Fill CH	FILL - Gravelly CLAY, brown grey, heterogeneous, dry, high plasticity, firm CLAY - brown, heterogeneous, dry, high		<u>\$37_0-0.1</u> \$37_0.4-0.5		No staining, odours or ACM observed No staining, odours or ACM observed		
		- - - - 1			plasticity, firm Termination Depth at: 1.0 m.		/S37_0.9-1		No staining, odours		
		1.5 2 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5									

PROJE PROJE						AP	DRILLING COMPANY TeratestEASTING 283,833.53DRILLING DATE 13-Jan-21NORTHING 6,263,729.42					
CLIEN PERMI ADDRE Plains,	T NO	. N/A 158 t	A Í			st Road, Er	DRILL RIG ELEVATION 24.2558 m AHD DRILLING METHOD Push Tube / Solid Flight Aug COORD SYS N/A u TOTAL DEPTH 9.75 m bgl COORD SOURCE Surveyor DIAMETER 125 mm LOGGED BY J Zeng					
COMPI	ETIC	on r	loadb	юх			CASING Class 18 PVC - 50mm		SCREEN INTERVAL	6.25 -	- 9.25 m bgl	
COMMENTS												
Drilling Method	Water (m bgl)	Mell Ruterile	SILANAARAIS	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DIA	Additional Observations	
PT /	+-	हिंद्व	n 88	_	· .^ . :	_ Concrete	Concrete	-		_	/No staining, odours	
SFA		500	282	_	÷ XXX	Fill _∕	FILL - Sandy GRAVEL, grey brown,		S38/MW07_0.25-0.35	$\frac{1}{0.4}$	or ACM observed	
			88	- 0.5	\bigotimes	Fill	heterogeneous, dry, well graded, very dense FILL - Gravelly CLAY, brown,		S38/MW07_0.45-0.55	0.6 0.5	No staining, odours	
				_	\longrightarrow	CH-SC	heterogeneous, dry, firm				No staining, odours	
		55	265	1 		01-00	FILL - Sandy CLAY, brown, heterogeneous, dry, high plasticity, firm		S38/MW07_1.15-1.255	·0.2	or ACM observed No staining, odours	
			250	_ 1.5							or ACM observed	
				- 1.5 - -		CH-SC	FILL - Sandy CLAY, brown, heterogeneous, dry, high plasticity, firm, inclusions of gravels		S38/MW07_1.65-1.75	∕ <u>0.2</u> ∖	/No staining, odours or ACM observed	
		200	282	- 2							No staining, odours	
			88						S38/MW07_2.15-2.25	0.3	or ACM observed	
			000	_ 2.5							No staining, odours	
		000	282			CH-SC	FILL - Sandy CLAY, brown, heterogeneous, dry, high plasticity, firm, inclusions of gravels		S38/MW07_2.65-2.75	0.3	or ACM observed	
			002020	- 3		SG	Gravelly SAND - brown to light brown, poorly graded, fine sand, inclusions of gravel in variable size		S38/MW07_3.15-3.25		No staining, odours or ACM observed	
		00000	10000000000000000000000000000000000000	3.5 			Variable Size		S38/MW07_3.65-3.75		No staining, odours or ACM observed	
		000000	200000	- 4 -					S38/MW07_4.15-4.25		No staining, odours or ACM observed	
		10 5 C 0 0 0	202500	4.5	0.0. 				S38/MW07_4.65-4.75		No staining, odours or ACM observed	
		00000	10000	- 5					S38/MW07_5.15-5.25		No staining, odours or ACM observed	
			00000000000000000000000000000000000000	- 5.5 - -	0,0 0,0 0,0 0,0				S38/MW07_5.65-5.75		No staining, odours or ACM observed	
			295 295	-6					S38/MW07_6.15-6.25		No staining, odours or ACM observed	
				- 6.5 - - 	0.0	SG	Gravelly SAND - brown to light brown, poorly graded, fine sand, inclusions of gravel in variable size, wet from 7.25mbgs		S38/MW07_6.65-6.75		No staining, odours or ACM observed	
	₽			7 					S38/MW07_7.15-7.25		No staining, odours or ACM observed	
				- 7.5 - - 8 -		SG	Gravelly SAND - brown to light brown, poorly graded, fine sand, inclusions of gravel in variable size, wet		/ <u>S38/MW07_8.15-8.25</u>		No staining, odours or ACM observed	
				- 8.5 								
				- 9 - - - 9.5					S38/MW07_9.15-9.25		No staining, odours or ACM observed	
	-				0.0		Termination Depth at: 9.8 m.					
		1					NATHER AND					

Disclaimer This log is intended for environmental not geotechnical purposes.

produced by ESlog.ESdat.net on 03 Feb 2021

1	CTN Per TNO SS	AME nrith C . N/A 158 to	PCC City C	C DSI Counc	and R il	AP st Road, E	Ũ	light	COORD SOURCE S	87.57 7 m AH Surveyo				
Plains, COMPL			oadh				DIAMETER 125 mm LOGGED BY J Zeng CASING Class 18 PVC - 50mm SCREEN INTERVAL 6 - 9 m bgl							
сомм			Jaub							0-3	in bgi			
						s								
Drilling Method	Water (m bgl)	Well Details		Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	DID	Additional Observations			
PT /		83	88	-	\sim	Fill	FILL - Sandy GRAVEL, grey brown,		S39/MW08_0-0.1	0.5	No staining, odours			
SFA		200	260	_	\bigotimes		heterogeneous, dry, well graded, medium dense		S39/MW08_0.2-0.3	0.4	or ACM observed			
			88	- 0.5		CH-SC	Sandy CLAY - brown grey, heterogeneous,		S39/MW08_0.4-0.5	0.3	No staining, odours or ACM observed			
		200 G20	00 000	_			dry, high plasticity, firm		S39/MW08_0.9-1	<i>/</i> 0.3	No staining, odours			
			200	_ 1					- 339/101000_0.9-1	0.3	or ACM observed			
			8	_						0.3	No staining, odours or ACM observed			
			200 200	_ 1.5					S39/MW08_1.4-1.5	0.3	No staining, odours			
			86	_							or ACM observed			
		200 200		- 2					S39/MW08_1.9-2	√ _{0.3} ∖	/No staining, odours \or ACM observed			
			200	_										
			8	- 2.5										
		200	260 200	_							No staining, odours			
			88	- 3					S39/MW08_2.9-3		or ACM observed			
			00	_										
			200	 3.5										
					0.	SG	Gravelly SAND - brown, white, grey, poorly				No staining, odours			
		689	265	_	0.0		graded, medium sand, loose, dry, inclusions of gravel in variable size		S39/MW08_3.9-4		or ACM observed			
			B	- 4	0 C		5							
			00 00 00	_	0°° C									
			280	- 4.5	0.0									
		20		_	0°.0				S39/MW08_4.9-5		No staining, odours or ACM observed			
		0.40	504	- 5	0.0				339/10/00_4.9-3		of ACIVI observed			
				_	°.S									
		••••		- 5.5	0. °									
				_	0.0						No staining, odours			
				- 6	0.0				2S39/MW08_5.9-6		^J or ACM observed			
				_	°.									
				6.5		SG	Gravelly SAND - brown, white, grey, poorly	ł						
		ŀŀ	.	_	0° 0°° (30	graded, medium sand, loose, damp to wet,				No staining, odours			
	₽	::E	≣ ∷	- 7	0 .O	80	inclusions of gravel in variable size	-	S39/MW08_6.9-7		or ACM observed			
				_		SP	SAND - brown, heterogeneous, damp to wet, poorly graded, medium grained sand, loose							
			₽ ∷	- 7.5	•••••									
				_							No staining, odours			
				- 8					S39/MW08_7.9-8		or ACM observed			
		∷≣		_		SP	SAND - light brown, heterogeneous, wet, poorly graded, mediium grained sand, loose							
				 8.5		1								
		ŀ:≣									No staining, odours			
				9					S39/MW08_8.9-9		or ACM observed			
		-												
		L	_											
				9.5			Termination Depth at: 9.5 m.							
				_										

PROJE	CT N	UMBER	60007	,		DRILLING COMPANY Teratest		EASTING 283,894.9	3			
		AME PO			AP	DRILLING COMPANY relatestEASTING 283,694.93DRILLING DATE 14-Jan-21NORTHING 6,263,602.31						
CLIENT	Per	rith City	Counc	il		DRILL RIG ELEVATION 24.501 m AHD						
PERMI						DRILLING METHOD Push Tube / Solid Flight Aug COORD SYS N/A						
ADDRE Plains, I			64 Old I	Bathur	st Road, E	5						
7 101110, 1						DIAMETER 125 mm		LOGGED BY J Zeng)			
-	-	N Road	lbox			CASING Class 18 PVC - 50mm		SCREEN INTERVAL	6 - 9	m bgl		
COMM												
Drilling Method	Water (m bgl)	yke indykobils	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	PID	Additional Observations		
PT/		83 8		\sim	Fill	FILL - Sandy GRAVEL, dark grey to brown,		S40/MW09_0.0-0.1		No staining, odours ၂		
SFA				\bigotimes		heterogeneous, dry, well graded, angular, medium dense		S40/MW09_0.2-0.3	0.9	or ACM observed		
			0.5		CH-SC	Sandy CLAY - dark grey brown,			0.7	No staining, odours or ACM observed		
						heterogeneous, dry, high plasticity, firm		S40/MW09_0.9-1.00	0.5	No staining, odours		
			ğ—1)a						0.0	or ACM observed		
								S40/MW09_1.4-1.50	0.5	or ACM observed		
			2-1.5						0.5	No staining, odours		
								S40/MW09_1.9-2.00	0.3	or ACM observed		
PT/	1		2-2 8-					040/11/000_1.0-2.00	0.5	or ACM observed /		
SFA												
			§— 2.5									
								S40/MW09_2.9-3.00		No staining, odours or ACM observed		
			2 - 3									
			o-3.5 ⊋−	0°	SG	Gravelly SAND - grey white, heterogeneous,						
				C		dry, high plasticity, firm		S40/MW09 3.9-4.00		No staining, odours or ACM observed		
			2-4	0 C				040/11/000_0.0-4.00				
				0.° C								
			තී— 4.5	0.0								
				0.° C				\$40/MW09_4.9-5.00		No staining, odours or ACM observed		
		0.40 h.C	[∑] ⊈ 5	0.0				<u></u>				
			_	0.0								
			5.5	, . 0	1							
			÷.	0.0				S40/MW09 5.9-6.00		No staining, odours or ACM observed		
			6	0.0								
		[∷] .	:F		SP	SAND - brown, heterogeneous, damp, poorly graded, mediium grained sand, loose						
			- 6.5 • -			poorly graded, medium grained sand, 100se						
		:∎:	÷.					S40/MW09_6.9-7.00		No staining, odours or ACM observed		
	Į₽	∷≣÷	·7									
		∷ ੈ:	7.5		SP	SAND - brown, heterogeneous, damp, poorly graded, mediium grained sand, loose						
		∷≣i:	: - 1.5							No staining adapted		
			. 8					S40/MW09_7.9-8.00		No staining, odours or ACM observed		
		:目:	· - ·									
		∷]∶	8.5									
		∷ ⊡:	- 0.5							No staining, odours		
			:9					S40/MW09_8.9-9.00		or ACM observed		
			- 9									
			9.5									
			- 9.3			Termination Depth at: 9.5 m.						
			F									

DRILLING COMPANY Ken Coles DRILLING DATE 14-Jan-21 DRILL RIG DRILLING METHOD Test Pit DIMENSIONS 2 x 0.5 m

EASTING N/A NORTHING N/A COORD SYS N/A COORD SOURCE Map Approximation LOGGED BY T Frisken

COMMENTS TP Elevation Approximately 2.0m above adjacent gs

Drilling Method	Water (m bgl)	Depth (m bgl)	Graphic Log	Lithological Class	Lithological Description	Moisture	Samples	PID	Additional Observations
		- 0.5 - 1 - 1.5 - 2 		RWN	RWN - Clayey SAND, heterogeneous, dry, poorly graded, loose, fine sand Clayey SAND heterogeneous, dry, loose to medium-dense, fine sand Termination Depth at: 2.5 m.		<u>S41_0-0.1</u> <u></u>		No staining, odours or ACM observed No staining, odours or ACM observed No staining, odours or ACM observed
		- 3.5 - 4 - 4 4.5 - 5 - 5.5 - 5.5 - 6.5							
		- 7 - 7.5 - 8 - 8.5 - 8.5 - 9 - 9 - 9.5							

Disclaimer This log is intended for environmental not geotechnical purposes.

Figure 1 - Site Plan and Sampling Locations

Rocla - Emu Plains 318000937

AMBOLLAUSTRALIA - GIS MAP file : 318000937 Rocla GIS P001 318000937 Rocla GIS

	R	A	MВ	٢ı	L		BOREHOL	E NUMBER BH1 PAGE 1 OF		
CL	IENT	r _ Ro	cla			PROJECT NAME Site Investigation				
PR	OJE		JMBER _3	18000	937					
DA	TE S	STAR	TED 14/5	/20	COMPLETED 14/5/20	R.L. SURFACE	DA	ТИМ		
								ARING		
EQ	UIPI	MENT	Hand A	uger / C		HOLE LOCATION				
но	DLE S	SIZE	50 mm			LOGGED BY VW	CHI	ECKED BY		
NO	TES	;			Ι					
Method	Water	RL (m)	Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Additional Observations		
			0.5		FILL; silty CLAY, reworked natural, brown, minor contamination	gravels, rootlets, no observed	BH1_0.0, ACM, PID 0.0ppm BH1_0.6, PID			
					FILL; sandy GRAVEL, grey-brown, dense. CLAY; dark brown, natural, high plasticity, moist,	no observed contamination	0.4ppm			
			1, <u>5</u> - - 2,0		Grading to red/brown Borehole BH1 terminated at 2m		BH1_1.5, PID 0.1ppm			
			- - 2,5 - - 3,0 - 3,5 - - 3,5 - - - - 4,0							

	R	A	Μ	B	ช่เ	L		BOREHOL	E NUMBER BH PAGE 1 O		
		r <u>Ro</u>									
PRO	OJE	CT NI	JMBE	R _31	8000	937	PROJECT LOCATION	Emu Plains			
						COMPLETED 14/5/20					
							_ SLOPE _90° BEARING _ HOLE LOCATION				
		SIZE									
	TES	-									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptic	'n	Samples Tests Remarks	Additional Observations		
-		()	()	***		FILL; silty CLAY, brown, minor gravels, rootlets, r	o observed contamination	BH2_0.0, ACM, PID 0.0ppm			
						CLAY; dark brown, high plasticity, consistent, mo Grading to brown	ist, no observed contamination	BH2_0.6, PID 0.1ppm BH2_1.5, PID 0.0ppm			
			2,0 - - - 2,5 - - - - - - - - - - - - - - - - - - -			Borehole BH2 terminated at 2m					

	R	A	MB	٢ı	L		BOREHOL	E NUMBER BH3 PAGE 1 OF 1	
		T R							
PR	OJE		JMBER _3	318000	937	PROJECT LOCATION _	Emu Plains		
					COMPLETED 14/5/20				
					atrix Drilling Geoprobe (pushtube or solid flight auger)			ARING	
					beoprobe (pushtube of solid hight auger)				
		s							
Method	Water	FILL; silty CLAY, reworked natural, brown,				n	Samples Tests Remarks	Additional Observations	
					FILL; silty CLAY, reworked natural, brown, minor contamination	gravels, rootlets, no observed	BH3_0.0, ACM, PID 0.0ppm		
					CLAY; natural, dark brown, high plasticity, consis contamination	tent, moist, no observed	BH3_0.3, PID 0.0ppm		
			1.0		Grading to orange/brown		BH3_1.0, PID 0.1ppm		
					Borehole BH3 terminated at 1.2m				
			- - 2 <u>,5</u> - - -						
			- 3 <u>,0</u> - - - 3 <u>,5</u> -						
			4,0						

	R	A	Μ	B	ช่า	L		BOREHO	LE NUMBER BH4 PAGE 1 OF 1		
CL	.IEN ⁻	T_Rc	ocla				PROJECT NAME Site Investigation				
PF	ROJE		JMBEI	R _3'	18000	937	PROJECT LOCATION _ Emu Plains				
DA	TE :	STAR	red _	14/5/2	20	COMPLETED 14/5/20	R.L. SURFACE	DA	TUM		
DF	RILLI	NG C	ONTR/	асто	R <u>Ma</u>	atrix Drilling	SLOPE 90°	BE	ARING		
						Geoprobe (pushtube or solid flight auger)					
							LOGGED BY VW	CH	IECKED BY		
		<u> </u>			<u>ر</u>						
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	n	Samples Tests Remarks	Additional Observations		
						Grass on surface Silty CLAY; brown/dark brown, high plasticity, re contamination	ootlets, moist, no observed	BH4_0.6, ACM			

	R	A	Μ	B	ช่า	L		BOREHC	DLE NUMBER BH5 PAGE 1 OF 1		
		T _ Ro									
						937					
						COMPLETED 14/5/20			EARING		
	DE 3		50 m	111				C			
Method	Image: state in the state i					Material Descripti	on	Samples Tests Remarks	Additional Observations		
						Grass on surface Silty CLAY; brown/dark brown, high plasticity, ro contamination	otlets, moist, no observed	BH5_0.3, ACM			
				XXXXX		Borehole BH5 terminated at 0.5m		-			
			1 <u>,0</u> _ _								
			_ 1 <u>,5</u> _ _								
			_ 2 <u>,0</u> _								
			_ _ 2 <u>,5</u> _								
			- - 3 <u>,0</u>								
			_ _ _ 3,5								
			- - - 4,0								

	R	A	Μ	B	ช้เ	L		BOREHOL	E NUMBER BH6 PAGE 1 OF 7		
CLI	IENT	r _Rc	ocla				PROJECT NAME Site Investigation				
PR	OJE		UMBE	R <u>3</u>	18000	937	PROJECT LOCATION Emu Plains				
DA	TE S	STAR	TED _	14/5/2	20	COMPLETED 14/5/20	R.L. SURFACE	DA	тим		
DR	ILLI	NG CO	ONTR/	асто	R Ma	atrix Drilling	SLOPE 90°	BE	ARING		
						Geoprobe (pushtube or solid flight auger)					
	DLE S		50 m	m				CH	ECKED BY		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptic	n	Samples Tests Remarks	Additional Observations		
						FILL; gravelly SILT, grey/brown, 10% gravels, dry		BH6_0.1, ACM			
						FILL; silty GRAVEL, brown/grey, 70% fine gravels contamination Silty CLAY; light brown with shale (grey/white) inc contamination		BH6_0.7			
			- - 1 <u>,5</u>			CLAY; red/brown, high plasticity, consistent, very contamination	moist, no observed	- BH6_1.5			
			_ _ _2,0			Borehole BH6 terminated at 2m		_			
			_ _ _ 2 <u>,5</u>								
			_ _ 3 <u>,0</u>								
			_ _ 3 <u>,5</u> _								
			4,0								

	R	A	Μ	B	ช่า	-L		BOREHOL	E NUMBER BH7 PAGE 1 OF		
CL	IENT	r R	ocla				PROJECT NAME Site Investigation				
PR	OJE	CT N	UMBE			937		Emu Plains			
DA	TE S	STAR	TED _	14/5/	20	COMPLETED _ 14/5/20	R.L. SURFACE	DA	тим		
									ARING		
EQ	UIPI	MENT	Har			eoprobe (pushtube or solid flight auger)					
			50 m	m			LOGGED BY VW	СН	ECKED BY		
NO	TES	<u> </u>						1			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	on	Samples Tests Remarks	Additional Observations		
			- - 0, <u>5</u>			FILL; gravelly SILT, grey/brown, 10% loose grav contamination		BH7 0.0, ACM, PID 2.8ppm			
			- 1 <u>,0</u> -			contamination	ry GRAVEL, brown/grey, 70% gravels, 30% silt, moist, no observed nation				
			_ 1 <u>,5</u> _ _			CLAY; natural, brown/red mottled, very high plaa grading to dark brown/red, no observed contami		BH7_1.5, PID 0.1ppm			
			2,0								
			- - 2 <u>,5</u> - 3 <u>,0</u> -			Borehole BH7 terminated at 2m					
			- 3 <u>,5</u> - - 4,0	-							

	R	A	MВ	ď١	L		BOREHO	PAGE 1 OF 1
CL	IENT	r _Rc	cla			PROJECT NAME _Site	Investigation	
PR	OJE		JMBER _3	18000	937	PROJECT LOCATION Emu Plains		
DA	TE S	STAR	TED 14/5	/20	COMPLETED 14/5/20			
								ARING
					Geoprobe (pushtube or solid flight auger)			
	DTES		<u> </u>	1	1			
Method	Water	RL (m)	(m) Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Additional Observations
We			(m) 0 - - - - - - - - - - - - -		FILL; gravelly SILT, grey/brown, 10% gravels, dr		BH8_0.1, ACM, PID 1.1ppm BJ8_1.0, PID 0.1ppm	
			- 3.0 - - 3.5 - - - - - -					

	R	A	Μ	B	ช์เ	L		BOREHOL	E NUMBER BHS	
CL	IEN	T_R	ocla				PROJECT NAME Site Investigation			
PR	OJE	ECT N	UMBE	R _3'	18000	937	PROJECT LOCATION _ Emu Plains			
DA	TE	STAR	TED _	14/5/2	20	COMPLETED 14/5/20	R.L. SURFACE	DA	rum	
									ARING	
EQ	UIP	MENT	Han	d Aug	jer / G	eoprobe (pushtube or solid flight auger)	HOLE LOCATION			
		SIZE		m			LOGGED BY VW	CHI	ECKED BY	
Method	Water	RL (m) Depth (m) Image: Figure Figur				Material Descripti	on	Samples Tests Remarks	Additional Observations	
			FILL; Gravelly SILT, grey/brown, 10% loose gravels 1-2cm, dry, no observed contamination Becoming dark brown, moist, higher gravel content (70% gravel/ 30% sand,				BH9_0.0, ACM, PID 1.4ppm			
			0 <u>,5</u>			Becoming dark brown, moist, higher gravel cont 1-2mm), no observed contamination CLAY; natural, red/brown, high plasticity, consist		BH9_0.4, PID 0.0ppm		
			-					BH9_0.8. PID 0.0ppm		
			 			Borehole BH9 terminated at 1m		_		
			-							
			1 <u>,5</u> 							
			_ 2,0							
			-							
			2 <u>,5</u>							
			-							
			3 <u>,0</u>							
			3,5							
			-							
			4,0							

	R	A	MB	٢ı	LL		BOREHOLE	E NUMBER BH10 PAGE 1 OF			
CLI	IENT	r_Ro	ocla			PROJECT NAME _Site	ROJECT NAME Site Investigation				
PR	OJE		UMBER 3	18000	937						
					COMPLETED 14/5/20						
					atrix Drilling Seoprobe (pushtube or solid flight auger)		ARING				
но	DLE S	SIZE	50 mm	ger / G			CHE	ECKED BY			
Method	Water		(m) Depthic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations			
				× × × ×	FILL; sandy GRAVEL, brown, concrete and cobi slightly moist, no odour, no observed contamina	oles (1-5cm), plastic fragments, ion	BH10_0.0, ACM, PID 1.6ppm				
			0,5	* * * * * * * * * * * * *	With gravels and sand (80/20), band of cobbles/ rounded, plastic fragments	gravels, cocnrete/gravel,	BH10_0.5, PID 0.2ppm				
			1 <u>.0</u>	· · · · · · · · · · · · · · · · · · ·	Sandy SILT; natural, brown, with gravels, moist,	no observed contamination	BH10_1.0, PID 0.0				
			2,0		Borehole BH10 terminated at 2m						
			2 <u>,5</u> _ _								
			3,0								
			3 <u>,5</u> _ _								
			4,0								

	R	RA	MB	٤ı	.L	E	BOREHOLE	E NUMBER BH11 PAGE 1 OF		
		T _R					NAME _Site Investigation			
					937		ECT LOCATION _Emu Plains			
							DATUM BEARING			
					eoprobe (pushtube or solid flight auger)					
нс	DLE		50 mm							
Method	Water				Material Description	on	Samples Tests Remarks	Additional Observations		
~	A				FILL; gravelly SAND, light brown/grey, gravels 20 contamination		BH11_0.0, ACM, PID 0.9ppm BH11_0.7. PID 0.1ppm			
					Borehole BH11 terminated at 1.3m		BH11_1.3, PID 0.1ppm			

	R	A	M	B	ช์เ	L	E	BOREHOL	E NUMBER BH12 PAGE 1 OF	
			ocla U MBE			937				
DA	TE S	STAR	red _	14/5/2	20	COMPLETED 14/5/20	R.L. SURFACE	DA	\TUM	
						trix Drilling eoprobe (pushtube or solid flight auger)				
но	DLE S		<u>50 mr</u>							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations	
			(iii) 			FILL; sandy GRAVEL, grey/brown, concrete frag odour or signs of contamination Becoming less gravelly, more sandy FILL; sandy GRAVEL, brown, grading to more s fragments (5cm), concrete gravel fragments, no	andy than gravel (80/20%), wire	BH12_0.0, ACM, PID 0.5ppm BH12_1.0, PID 0.0ppm		
						tragments (scm), concrete gravel tragments, no contamination	oaour, no observed	BH12_1.5, PID 0.0ppm		
			_ 2 <u>,5</u> _ _ _			Sandy SILT; natural, brown, with gravels, moist,	no observed contamination	BH12_2.5, PID 0.0ppm		
			3,0					BH12_3.0, PID		
			3, <u>5</u> - - - - - - - - - - - - - - - - - - -			Borehole BH12 terminated at 3m		0.0ppm		

	R	A	Μ	B	ช่า	L		BOREHOL	E NUMBER BH13
CLI	IENT	r _Ro	ocla				PROJECT NAME _Site	Investigation	
PR	OJE	CT N	UMBE	R _3'	18000	937	PROJECT LOCATION	Emu Plains	
DA	TES	STAR	TED _	14/5/2	20	COMPLETED 14/5/20	R.L. SURFACE	D.	ATUM
								Earing	
			' <u>Han</u> 50 mi	d Aug m	er / G	eoprobe (pushtube or solid flight auger)			
	TES		50 111					0	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations
			0,5			FILL; gravel/concrete on surface then CLAY, re high plasticity, loose gravels (1-2mm gravels), moist	worked natural, red/brown, wood fragments, dry-slightly	BH13_0.1, ACM, PID 1.4ppm	
			_			GRAVEL; seam of gravel, 1-2mm, moist		BH13_0.6, PID 0.0ppm	
			-			CLAY; natural, red/brown, moist, high plasticity,	fine grained, minor gravels	-	
			1,0			Borehole BH13 terminated at 1m		BH13_1.0, PID 0.0ppm	
			- - - 1,5 - - - - 2,0 - - - - - - - - 3,0 - - - 3,0 - - - 3,5 - - - - - - - - - - - - - - - - - - -						
			4,0						

	R	A	Μ	B	٤ı	L	E	BOREHOI	LE NUMBER BH	
		R _Rc						nvestigation		
						937				
						COMPLETED 15/5/20				
						trix Drilling eoprobe (pushtube or solid flight auger)			BEARING	
			50 m	m			LOGGED BY VW	c	CHECKED BY	
	TES									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Additional Observations	
			_			CONCRETE hardstand				
			-			FILL; backfill sand with gravels 1-2mm, brown, m	oist, no observed contamination	BH14_0.2, ACM, PID 1.1ppm		
			-			CLAY; natural, dark brown mottled orange, consi	stent, fine grained	BH14_0.4, PID 0.2ppm		
			0,5			Becoming mottled dark brown				
			-			Clayey SILT; brown/red, consistent, low-moderat	e plasticity			
			-							
			1 <u>,0</u>							
			-							
			-							
			-			Silty CLAY; brown, consistent, low-medium plasti	city you moist			
			1 <u>,5</u>					BH14_1.5, PID 0.0ppm		
			-	-		Borehole BH14 terminated at 1.55m				
			_							
			-	-						
			2 <u>,0</u>	-						
			-	-						
			-	-						
			_ 2,5							
			<u>-,</u>							
			-							
			-							
			- 3 <u>,0</u>							
			-							
			-							
			-							
			3 <u>,5</u>							
			-							
			-							
			-	1						
			4,0							

PRO DAT DRIL EQU HOL)je(Te s Llin Jipn .e s	TAR NG CO	umbe Ted _		18000						
dat Dril Equ Hol	'E S Llin Jipn .e S	TAR NG CO	TED _		10000	937	PROJECT NAME Site I				
equ Hol	JIPN .e s	IENT			20	COMPLETED 15/5/20	R.L. SURFACE	DA			
		IPMENT <u>Hand Auger / Geoprobe (pushtube or solid flight auger)</u> HOLE LOG E SIZE <u>50 mm</u> LOGGED ES				Geoprobe (pushtube or solid flight auger)					
	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations		
		. ,	_			FILL; mulch/topsoil FILL; gravelly SAND, light brown, coarse grained	l, 10% gravels, dry, no observed	BH15_0.1, PID 0.1ppm			
						contamation		BH15_0.3, PID 0.0ppm	black staining at 0.3 m		
			0 <u>,5</u>			CLAY; natural, red/brown, hard, brittle, fine grai observed contamination	ned, dry-slightly moist, no	BH15_0.5, PID 0.0ppm			
			-			grading to silty CLAY; higher plasticity					
_			1,0			Borehole BH15 terminated at 1m					
			1,5								
			_								
			-								
			2 <u>,0</u>								
			-								
			-								
			-								
			3 <u>,0</u>								
			-								
			-								
			4,0								

	R	A	ME	в¢	1	.L	E	BOREHOLI	E NUMBER BH16 PAGE 1 OF
CL	IENT	r _Rc	ocla				PROJECT NAME Site In	vestigation	
PR	OJE		UMBER	318	0009	37		mu Plains	
DA	TE S	STAR	TED _1	5/5/20		COMPLETED	R.L. SURFACE	DA	тим
									ARING
EQ	UIP	MENT	Hand	d Auge	r / G	eoprobe (pushtube or solid flight auger)			
HO NO	DLE S	SIZE	50 mm	n				CH	ECKED BY
Method	Water	RL (m)	Depth (m)	Graphic Log Classification	Symbol	Material Description	n	Samples Tests Remarks	Additional Observations
						FILL; gravelly SAND, light brown, coarse grained contamation	, 10% gravels, dry, no observed	ВН16_0.0, АСМ, PID 1.6ppm	
			0,5			CLAY; natural, red/brown grading to red, hard, br moist, no observed contamination	ittle, fine grained, dry-slightly	BH16_0.6, PID 0.0ppm	
			1 <u>,0</u> 						
			1 <u>,5</u>			Borehole BH16 terminated at 1.6m			
			2 <u>,0</u>						
			2,5						
			- - - 3,0						
			3 <u>,5</u> –						
			4,0						

	R	A	Μ	B	๔เ	L		BOREHOLE	E NUMBER BH17 PAGE 1 OF 1
		Γ <u></u> <u>R</u> α							
						937			
						COMPLETED 15/5/20			
						ıtrix Drilling eoprobe (pushtube or solid flight auger)			ARING
			50 m	ım	90170		LOGGED BY VW	СН	ECKED BY
		s							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations
						FILL; gravelly sandy SILT, grey/brown, loose gra	avels (10%), no observed		
			-			FILL; gravelly SAND, light brown, coarse graine	d, gravels 10%, dry	BH17_0.2, ACM, PID 0.1ppm	
			0 <u>,5</u> - - -			CLAY; natural, red/brown, hard, brittle, fine grain observed contamination	ned, dry-slightly moist, no	BH17_0.5, PID 0.1ppm	
			<u> 1,0 </u>			Borehole BH17 terminated at 1m			
			_ 1 <u>,5</u> _						
			2,0						
			-						
			_ 2 <u>,5</u> _						
			- 3 <u>,0</u> -						
			- - 3 <u>,5</u> -						
			- - 4,0						

PROJ	JEC E ST	TART	mbe Ed _	R <u>31</u> 15/5/2	180009 20	937 COMPLETED <u>15/5/20</u>	PROJECT LOCATION _E	mu Plains		
							SLOPE <u>90°</u>			
	IPM		Han 50 m	d Aug m	jer / G	eoprobe (pushtube or solid flight auger)				
OLE			00 111					`		
Metnoa Water	water	RL I (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Additional Observations	
			_			FILL; sandy GRAVEL, grey/brown, gravels (conc contamination	rete), slightly moist, no observed	BH18_0.1, ACM, PID 0.1ppm		
			0,5 - - 1,0 - 1,5 - - - - - - - - - - - - - - - - - - -			CLAY; natural, red/brown, hard, brittle, fine grain observed contamination Becoming slightly moist, silty clay, red/brown, no		BH18_0.5, PID 0.0ppm BH18_1.8, PID 0.0ppm		
			- - - 2,5 - - - - 3,0 - - - - - - - - - - - - - - - - - - -			Borehole BH18 terminated at 2m				

		. <u>Ro</u> CT NI				937			
						COMPLETED			
						trix Drilling Geoprobe (pushtube or solid flight auger)			
10	LES	SIZE	50 m	in Auç			LOGGED BY VW		CHECKED BY
	TES								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations
			-			FILL; gravelly SAND, light brown/brown, coarse observed contamination	grained, soft, gravels 5%, no	BH19_0.0, ACM, PID 0.0ppm	
			 0 <u>,5</u>			CLAY; natural, brown grading to red/brown, hav moist, no observed contamination	d, brittle, fine grained, dry-slightly	BH19_0.5, PII 0.0ppm	5
			-						
			1,0			Borehole BH19 terminated at 1m			
			-						
			1 <u>,5</u>						
			-						
			2 <u>,0</u> 						
			_ 2 <u>,5</u>						
			-						
			_ 3 <u>,0</u> _						
			-						
			3 <u>,5</u>						

	R	A	Μ	B	ช่า	L		BOREHOLE	E NUMBER BH	
		Г <u>_Ro</u>								
'R	OJE	CIN	UMBE	:R <u>3</u>	18000	937	PROJECT LOCATION	Emu Plains		
						COMPLETED _ 15/5/20				
							SLOPE _90° BEARING			
						<u>Geoprobe (pushtube or solid flight auger)</u>				
			<u> 50</u> r	nm			LOGGED BY VW	CHI	ECKED BY	
	TES	, <u> </u>								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptic	n	Samples Tests Remarks	Additional Observations	
			-			FILL; sandy silty GRAVEL, brown/grey, 1-3cm, lo	ose, dry	BH20_0.0, ACM, PID 66.1 ppm		
			-			Black stain inclusion, hydrocarbon odour		BH20_0.3, PID 57.8ppm		
			- 0 <u>,5</u>			CLAY; natural, black/brown, stain patches, stiff, i hydrocarbon odour	nigh plasticity, moist,	BH20_0.5, PID 1.0ppm		
			-			Grading to brown/red, no observed contamination	ı			
			-					BH20_0.9, PID 0.0ppm		
_			1,0			Borehole BH20 terminated at 1m		_		
			-							
			-	1						
			1,5							
			-							
			-							
			-							
			-							
			2,0							
			-	1						
			-	1						
			2,5							
			-							
			-							
			-							
			-							
			3 <u>,0</u>							
			-							
			-	1						
			-	1						
			3 <u>,5</u>							
			-							
			-							
			-							
			4,0							

	R	A	Μ	B	ช่า	-L		BOREHOL	E NUMBER BH2 PAGE 1 OF
CLI	IENT	Ro	cla				PROJECT NAME _Site	e Investigation	
PR	OJE	CT NI	JMBE	R <u>3</u> 1	8000	937	PROJECT LOCATION	Emu Plains	
						COMPLETED			
						latrix Drilling Geoprobe (pushtube or solid flight auger)			
	TES					Ι			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Additional Observations
			- - - 0, <u>5</u>			FILL; gravelly SAND backfill, brown/grey, coarse sobserved contamination	grained gravels 1-2cm, no	BH21_0.1, ACM, PID 0.2ppm BH21_0.6, PID	
			- - - 1,0			CLAY; natural, mottled dark grey/brown, fine grain moist, no observed contamination Borehole BH21 terminated at 1m	ned, high plasticity, rootlets,	0.2ppm	
			- - 1,5						
			- - -						
			2 <u>,0</u> -						
			- 2 <u>,5</u> -						
			- - 3 <u>,0</u>						
			- - - -						
			3 <u>,5</u> - -						

	R	A	MB	٢ı			BOREHOLE	E NUMBER BH22 PAGE 1 OF	
	IEN ⁻	T	ocla		937				
DA	TE S	STAR	TED <u>15/5/</u>	20	COMPLETED 15/5/20	R.L. SURFACE	DATUM BEARING CHECKED BY		
нс		SIZE							
Method	Water		(m) Graphic Log	Classification Symbol	Material Descript	tion	Samples Tests Remarks	Additional Observations	
					FILL; gravelly sandy SILT, fine grained, with loo FILL; sandy GRAVEL, light brown/grey, coarse to brown, no observed contamination CLAY; natural, red/brown, hard, brittle, fine grain observed contamination Borehole BH22 terminated at 1m	grained, 1-4cm gravels, grading	BH22_0.0, ACM, PID 1.7ppm BH22_0.4, PID 0.0ppm BH22_0.6, PID 0.0ppm		
			- - - 3, <u>5</u> - - - - 4,0						

	R	A	M	B	ช์เ	L	E	BOREHOL	E NUMBER BH23 PAGE 1 OF	
		T <u>Ro</u>		R 3 ⁻	180009		PROJECT NAME Site In PROJECT LOCATION			
DA DR	TE S	STAR ⁻ NG CO	red _ Ontr.	15/5/: ACTO	20 R _Ma	COMPLETED _15/5/20 F	R.L. SURFACE	DATUM BEARING		
	DLE S		50 m	im		L	OGGED BY VW	СН	ECKED BY	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Additional Observations	
			-			FILL; gravelly sandy SILT, brey/brown, loose gravel contamination FILL; gravelly SAND, light brown, coarse grained gr contamination	avels 10%, dry, no observed	BH23_0.2, ACM, PID 0.1ppm		
			0 <u>,5</u> 			CLAY; natural, red/brown, hard, brittle, fine grained, observed contamination	dry-slightly moist, no	BH23_0.6, PID 0.1ppm		
			_ 1 <u>,0</u>							
			-							
			1, <u>5</u> - -							
			2,0			Borehole BH23 terminated at 2m				
			-							
			-							
			2 <u>,5</u> _							
			_							
			3 <u>,0</u>							
			-							
			3 <u>,5</u>							
			_							
			4,0							

	R	A	МΒ	٢ı	-L			E NUMBER BH24 PAGE 1 OF	
		T <u>Ro</u> CT N			937				
DA DR	TE S	STAR ⁻ NG CO	TED	5/20 OR _Ма	COMPLETED 15/5/20	R.L. SURFACE SLOPE _90°	DATUM BEARING CHECKED BY		
но		SIZE							
Method	Water	RL (m)	(m) Graphic Log	Classification Symbol	Material Descriptio	Material Description		Additional Observations	
					FILL; gravelly sandy SILT, grey/brown, loose grav observed contamination	rels 10%, 1mm-1cm, no	BH24_0.0, ACM, PID 0.0ppm		
			0,5		FILL; gravelly SAND, light brown, coarse grained contamination CLAY; natural, red/brown, hard, brittle, fine graine contamination	-	BH24_0.4, PID 0.0ppm		
					Contamination		BH24_0.8, PID 0.2ppm		
			 		Borehole BH24 terminated at 1m				
			- _ 1 <u>,5</u>						
			2 <u>,0</u> _ _						
			2 <u>,5</u>						
			-						
			3 <u>,0</u> _ _						
			- 3 <u>,5</u>						

	R	A	Μ	B	ช้า	-L		BOREHOLI	E NUMBER BH25 PAGE 1 OF		
CL	IENT	r _ Ro	ocla				PROJECT NAME _Site	Investigation			
PR	OJE		JMBE			937					
DA	TE S	STAR	TED	14/5/2	20	COMPLETED 14/4/20	R.L. SURFACE	ТИМ			
									ARING		
						eoprobe (pushtube or solid flight auger)					
		SIZE _		m			LOGGED BY VW	CHI	ECKED BY		
Method	Water		Depth (m)	Graphic Log	Classification Symbol	Material Description	on	Samples Tests Remarks	Additional Observations		
						FILL; sandy SILT, light grey, with gravels (60%), Becoming higher gravel content (90%) Becoming moist, gravel (50%) /sand (50%) CLAY; natural, light brown, plastic, loose gravels Borehole BH25 terminated at 2.2m		BH25_0.1, PID 0.0ppm BH25_1.0, PID 0.0ppm BH25_1.5, PID 0.1ppm BH25_2.0, PID 0.0ppm			
			4,0								

HOLE / TEST PIT 318000937 ROCLA EMU PLAINS GPJ GINT STD AUSTRAL

						937					
						trix Drilling					
QL	JIP	MENT	Han	d Au	ger / G	eoprobe (pushtube or solid flight auge	r) Hole location				
	LE S TES		<u>50 m</u>	m							
	X C B B D H H H H H H H H H H H H H H H H H				Classification Symbol	Material Desci	ription	Samples Tests Remarks	Additional Observations		
						FILL; sandy SILT, light grey, with gravels, dry	, no observed contamination	BH26_0.0, ACM, PID 1.1ppm			
			0 <u>,5</u>			Silty CLAY: natural, brown, consistent, moder contamination	rate plasticity, moist, no observed	BH26_0.4, PIE 0.1ppm			
						Silty CLAY; natural, grey/white, with shale like contamination	inclusions, no observed	BH26_0.7, PIE 0.1ppm			
			 			Borehole BH26 terminated at 1m		_			
			_ _ 1 <u>,5</u> _								
			_ 2 <u>,0</u> _								
			_ 2 <u>,5</u> _								
			- 3 <u>,0</u> -								
			 3 <u>,5</u>								

	R	A	Μ	B	๔เ	-L	I	BOREHOL	E NUMBER BH27 PAGE 1 OF			
		Г <u></u> Ro				~~~						
						937		PROJECT LOCATIONEmu Plains R.L. SURFACE DATUM				
						trix Drilling						
						eoprobe (pushtube or solid flight auger)						
	DLE SIZE 50 mm											
NO	TES	s	1					1				
Method	Image: state						on	Samples Tests Remarks	Additional Observations			
			-			FILL; sandy SILT, light grey, with gravels, dry, no	o observed contamination	BH27_0.0, ACM, PID 1.2ppm				
			0 <u>,5</u>			Silty CLAY; natural, brown, consistent, moderate contamination	plasticity, moist, no observed	BH27_0.5, PID 0.4ppm				
			-			Borehole BH27 terminated at 0.8m		-				
			-									
			-									
			-									
			-									
			2 <u>,0</u>									
			-									
			-									
			2 <u>,5</u>									
			-									
			–									
			3 <u>,0</u> –									
			-									
			-									
			-									
			4,0									

	R	A	M	B	ช์เ	.L	E	BOREHOLI	E NUMBER BH2 PAGE 1 OF			
			ocla					TNAME _Site Investigation				
						937						
						trix Drilling						
						nx Drilling eoprobe (pushtube or solid flight auger)						
но	LES		50 mn									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations			
						FILL; gravelly SILT, brown/grey, gravels 1-2cm, contamination	some rootlets, dry, no observed	BH28_0.0, ACM, PID 2.9ppm				
						CLAY; natural, brown grading to red, consistent observed contamination	, high plasticity, slightly moist, no					
			0 <u>,5</u> 					BH28_0.6, PID 0.1ppm				
						Borehole BH28 terminated at 1m						
			1,5									
			-									
			2,0									
			-									
			2 <u>,5</u>									
			-									
			_ 3 <u>,0</u>									
			3 <u>,5</u>									
			4,0									

	IEN	T <u>R</u>	ocla			937	PROJECT NAME Site	Investigation	E NUMBER BH29 PAGE 1 OF
DR EQ HC	NUIPI DLE \$	NG C MENT SIZE	ONTRA Hand 50 mr	ACTO d Aug	R <u>Mat</u> er / Ge	COMPLETED 14/5/20 rix Drilling eoprobe (pushtube or solid flight auger)	SLOPE 90° HOLE LOCATION	BE	ARING
Method	Image: Second						on	Additional Observations	
						Silty CLAY; natural, brown, consistent, moderate contamination		BH29_0.0, ACM, PID 0.9ppm BH29_0.5, PID 0.3ppm	

	R	A	Μ	B	ช่า	L		BOREHOLE	E NUMBER BH		
		. <u>Ro</u>				037					
								DATUM BEARING			
					ger / G	Geoprobe (pushtube or solid flight auger)					
	IE S		50 m	nm			LOGGED BY VW	CH	CHECKED BY		
Nietnoa	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations		
		. ,	-			FILL; gravelly SAND, brown, 1-2cm, rootlets, no	observed contamination	BH30_0.0, ACM, PID 2.0ppm			
			- 0 <u>,5</u> -			FILL; clayey SILT, reworked natural, brown/mott moderate palsticity, moist, no obserevd contamin	ed orange, fine grained, nation	BH30_0.4, PID 0.0ppm			
			_ 1 <u>,0</u> _			Grading to light brown/mottled orange CLAY; natural, brown, consistent, high plasticity,	moist				
						Borehole BH30 terminated at 1.5m		BH30_1.3, PID 0.1ppm			
			-								
			2,0								
			-								
			2 <u>,5</u> –								
			-								
			3 <u>,5</u> –								
			4,0								

	R	A	Μ	B	ť١	.L		BOREHOLE	PAGE 1 OF		
		r _ Ro									
						937					
							R.L. SURFACE DATUM SLOPE 90° BEARING				
						Geoprobe (pushtube or solid flight auger)	HOLE LOCATION				
ю	LES	SIZE	50 m	ım				CHE	CKED BY		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	on	Samples Tests Remarks	Additional Observations		
			0,5			FILL; Sandy SILT, light grey, loose gravels, some inclusions, slighty hydrocarbon odour, becoming contamination	e large gravels ~30mm, plastic moist, no observed	BH31_0.0, ACM, PID 0.1ppm BH31_0.5, PID			
			-			Silty CLAY; natural, brown, even, moderate plast contamination	icity, slightly moist, no observe	0.1ppm			
			1 <u>,0</u> –			Silty CLAY; natural, black brown, loose gravel (1r contamination Borehole BH31 terminated at 1.3m	CLAY; natural, black brown, loose gravel (1mm), moist, no observed				
			 1 <u>,5</u>					0.ōppm			
			_ 2 <u>,0</u> _								
			_ 2 <u>,5</u>								
			-								
			3 <u>,0</u> – –								
			_ 3 <u>,5</u> _								
			4,0								

	R	A	ME	3 C	Ĺ	L		E	BOREHOL	E NUMBER MW1 PAGE 1 OF 1
		T <u>Roci</u>								
DF EC HC	RILLI QUIP DLE :	NG COM	Sonio Sonio	CTOR	<u>Matı</u> Rig	rix Dril	COMPLETED 13/5/20	SLOPE <u>90°</u> HOLE LOCATION	ARING	
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
							FILL; Gravelly SAND, brown, firm, dry, f no observed contamination FILL; Gravelly SAND, brown, firm, dry n minor cobbles, no observed contaminat CLAY; natural, red-brown, high plasticity no observed contamination Gravelly CLAY; natural, red-brown, high sands, medium-coarse gravels and larg stone),dry, no observed contamination	nedium grained, coarse gravels, tion y, hard, dry, fine sands present,	MW1_0.0, PID 0.1ppm MW1_0.5, PID 0.0ppm MW1_2.5, PID 0.4ppm MW1_4.5, PID 0.2ppm	
	<u>•</u>						Gravelly SAND; natural, red-orange bed depth, medium-coarse grained limestor up to 150mm, loose, moist	coming darker red/brown with ne/river stone gravels/cobbles	MW1_7.5	

	R	AN	1 8	3 C	Ĺ	L					BOREH	DLE NUMBER MW2 PAGE 1 OF 1		
DAT DRI EQU HOI	ILI JIP _E	STARTEI NG CON MENT Sc SIZE _50	D <u>1</u> TRAC	5/5/20 CTOR Drill Riq	Mat g	rix Dril	COMPLETED ling		R.L. S Slopi Hole	URFACE E _90° LOCATION		DATUM BEARING CHECKED BY		
Method	Well RL Depth (m) US CONCRETE on surface CONCRETE on surface FILL; Sandy GRAVEL, grey-brown, g										Samples Tests Remarks	Additional Observations		
					-		FILL; Sandy GR, observed contar FILL; Gravelly C minor sands, me Sandy CLAY; na silts present, dry	AVEL, grey-brown mination LAY, brown-orang edium grained, no o tural, red-brown, h , no observed con	ie, high plastic observed cont high plasticity, itamination	ity, firm, fine gravels, tamination firm, fine sands and	 MW2_0.2, PI 0.2ppm MW2_0.5, QC QC8, PID 0.3ppm MW2_10, PI 0.2ppm MW2_2.0, PI 0.0ppm MW2_4.5, PI 0.1ppm NW2_7.0, PI 0.0ppm 			

	R	A	M	3 C	Ĺ	L		E	BOREHOL	E NUMBER MW3 PAGE 1 OF 2
								PROJECT LOCATION _E		
							COMPLETED <u>13/5/20</u>			
		ING CO					ling t			ARING
							I			
	DTE									
Method	Water	Well Details		Depth (m)	Graphic Log	Classification Symbol	Material Descrip	otion	Samples Tests Remarks	Additional Observations
Sonic	FILL; Sandy GRAVEL, grey-brown, h gravel is medium-coarse grained, hig						FILL; Sandy GRAVEL, grey-brown, hard, gravel is medium-coarse grained, high pla	blue metal, concrete cobbles, asticity clays, dry, no observed	MW3_0.0, QC1, QC2, PID	
S	FILL; Sandy GRAVEL, grey-brown, s						FILL; Sandy GRAVEL, grey-brown, stiff, b	lue metal gravels,	0.3ppm MW3_0.5, PID 0.4ppm	
	FILL; Sandy GRAVEL, grey-brown, s medium-coarse, minor clays, high pla observed contamination						medium-coarse, minor clays, high plasticit observed contamination	ty clays present, dry, no	0.4ppm	
			Ĭ	1			CLAY; natural, red-brown, high plasticity, I contamation	hard, dry, no observed	MW3_1.0, PID 0.9ppm	
			X	-						
			3	-						
				2					MW3_2.0, PID 0.2ppm	
			×	-					0.200	
			X	-			Sandy CLAY; red-orange-brown, low plas sands, firm, dry, no observed contaminati	ticity, fine-medium grained		
			X	3					MW3_3.0, PID	
			Ś	-	<i>[]]]</i>		Gravelly SAND; red-brown, medium-coars	se grained, loose, coarse	0.1ppm	
				-	• 🔿		gravels, minor cobbles, dry			
				4	0					
			Ž	-	0 0					
			Ì	-					MW3_4.5, PID 0.5ppm	
			Š.	_	9		Gravelly SAND; natural, grey-orange, loos	se dry medium grained	0.000	
			8	5	• ()		limestone/river cobbles, coarse gravels up observed contamination	o to 150mm, moist, no		
0400				-	0					
			Ž	-	° 0					
			ý	6) ())					
			Š.	-	Ø					
200			3	-	° ()					
				7	0					
5			Ž	-	οŌ					
			Ì	-	\circ					
L				8	Ø					
			2	<u> </u>	° (\					
1000				-) Ø					
20010				-	° O					
				9) ())				MW3_9.0, PID 0.5ppm	
					[<i>ø</i> 0					
					° (\					
				10	2					

	R	AN	1 8	3 C	Ĺ	L			BOREH	DLE NUMBER MW3 PAGE 2 OF 2		
		T <u>Rocla</u> ECT NUM						PROJECT NAME Site				
D/	ATE :	STARTE	D 13	3/5/20			COMPLETED 13/5/20	R.L. SURFACE		DATUM		
		ING CON								BEARING		
EC	QUIP	MENT S	onic l	Drill R	ig			HOLE LOCATION				
			0 mm					LOGGED BY TF		CHECKED BY		
NC	DTES	s					1			1		
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material D	Description	Samples Tests Remarks	Additional Observations		
Sonic N							Gravelly SAND; natural, grey-orang limestone/river cobbles, coarse gra- observed contamination (continued) BEDROCK; weathered Shale, natur Borehole MW3 terminated at 15m	vels up to 150mm, moist, no)				

	R	AN	4 E	3 C	Ĺ	L			BOREHO	PAGE 1 OF 1
CL	IENT	Rocla	а					PROJECT NAME Site Ir	vestigation	
DA	TES	STARTE	D_14	4/5/20			COMPLETED14/5/20	R.L. SURFACE	[DATUM
		NG CON								BEARING
EQ	UIPI	MENT S	Sonic	Drill R	lig					
				<u>1</u>				LOGGED BY TF	(CHECKED BY
NC	TES									
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descri	ption	Samples Tests Remarks	Additional Observations
				_	***	•	FILL; Sandy GRAVEL, brown-grey, very f medium-coarse grained, medium grained	firm (highly compact),	MW4_0.0, PID 0.7ppm	
				-			fill, dry, no observed contamination FILL; Sandy GRAVEL, grey, coarse grain		MW4_0.5, QC3 QC4, PID	,
				-			no observed contamination	iou, couroe cunae, min, ary,	0.5ppm	
							FILL; CLAY, orange-brown, low plasticity, gravels present, dry, no observed contant	hard, minor sands and nination	MW4_1.0, PID 0.6ppm	
				-			FILL; Gravelly CLAY, grey-brown, hard, h present, dry, no observed contamination	igh plasticity, coarse gravels	MW4_1.5, PID 0.3ppm	
				2			Sandy CLAY; natural, red-brown, high pla sands present, firm, dry-moist, no observ	asticity, fine-medium grained ed contamination	MW4_2.0, PID 0.4ppm	
	sands present, firm, dry-moist, no o								0.4ppm	
				-						
				3						
				_						
				-						
				-						
				4						
				-						
				_	¢ 0		Gravelly SAND; natural, red-orange-brow	n, medium-coarse grained,		
				5	• 🔿		limestone/river stone gravels and cobbles moist/wet, no observed contamination	s up to 150mm, loose,		
		¥7 ¥7		_	Ø					
				-	<u>ہ</u> ہ					
				_	ن ہ ک					
				6	Ø					
				-	° • (\					
					$\langle o \rangle$	1				
				7	° 0				MW4 7.0, PID	
				<u> </u>	• 🔿				0.3ppm	
				-	0					
				-	ي م					
				8) (\ }					
				-	Ø					
					0 0 (\					
				9		1				
		<u>. · </u>		9	· • · · · ·		Borehole MW4 terminated at 9m			
				-						
				-						
				10						

r

	RAMBOLL BOREHOLE NUMBER MW												
											Investigation		
DA DR	TE S	STARTEI NG CON	D <u>1</u> 4 TRAC	4/5/20 CTOR	Matr	ix Drill	COMPLETED	14/5/20	SLOPE 90°	DATUM BEARING			
нс	DLES		50 mn							CHECKED BY			
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol		Material Des		Samples Tests Remarks	Additional Observations		
				- - - 1			sands, hard/very fir FILL; Sandy GRAV	rm, crushed concret	n, coarse, medium grained te gravels mixed with soil, dry arse, medium grained sands, dry	MW5_0.0, PID 0.1ppm MW5_0.5, QC5, QC6, PID 0.0ppm			
				- - - 2			CLAY; natural, red-brown, high plasticity, minor medium grained sands, hard, moist, no observed contamination		MW5_1.5, PID 0.3ppm				
								ral, red-brown, medi observed contamin	ium-coarse sands, high plasticity, ation	MW5_3.0, PID 0.6ppm			
					4								
							Gravelly SAND; natural, red-brown limeston/river stone gravels and co observed contamination	e gravels and cobble	ium-coarse grained, ; up to 150mm, loose, wet, no				
										MW5_7.0, PID 0.0ppm			
				9 9 - - - 10	0		Borehole MW5 terr	ninated at 9m					

CLIENT Rocla PROJECT NUMBER 318000937 PROJECT LOCATION								PROJECT NAME Site I	BOREHOLE NUMBER MW6 PAGE 1 OF Site Investigation DN _Emu Plains			
DA DR EQ	TE : RILLI QUIP	STARTE	D 1	5/5/20 CTOR Drill F	_Matr Rig	ix Drill	COMPLETED 15/5/20	_ R.L. SURFACE _ SLOPE _90° _ HOLE LOCATION		DATUM		
HOLE SIZE 50 mm								_ LOGGED BY _TF		CHECKED BY		
Method	Water			Depth	Graphic Log	Classification Symbol	Material Des	scription	Samples Tests Remarks	Additional Observations		
Me							FILL; Sandy SILT, brown, low plasticity gravels, minor organic content (roots, contamination Sandy CLAY; red-brown, high plasticit becoming hard with depth, dry Gravelly SAND; natural, red-brown, m limestone/river stone cobbles and gravet with depth	leaves, sticks, no observed	MW6_0.0, PII 0.4ppm MW6_0.5, PII 0.2ppm MW6_1.0, PII 0.5ppm MW6_2.0, PII 0.4ppm MW6_4.5, PII 0.3ppm			

R	A١	4 E	3 C	Ĺ	L		BOREHOLE NUMBER MW6 PAGE 2 OF 2				
	. <u>Rocla</u>						PROJECT NAME _ Site Investigation				
DATE S DRILLII EQUIPI	STARTE	D <u>1</u> ITRAC	5/5/20 CTOR Drill F	Mat	rix Dril	COMPLETED <u>15/5/20</u> lling	R.L. SURFACE SLOPE 90° HOLE LOCATION LOGGED BY TF		DATUM BEARING		
Method Water	Well		Depth	Graphic Log	Classification Symbol	Material Des	cription Samples Remarks		Additional Observations		
			$\begin{array}{c} (m) \\ (m) \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $			Gravelly SAND; natural, red-brown, me limestone/river stone cobbles and grav wet with depth (continued) Borehole MW6 terminated at 10.5m	rdium-coarse grained, els up to 150mm, dry, becoming				